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Abstract: The Flemish Environment Agency (VMM) has been gathering water quality and 
biological data in more than 1000 sites per year since 1989. These data have been used to 
develop predictive models for macroinvertebrates based on data-driven methods (regression 
trees). These models relate the river status to the Multimetric Macroinvertebrate Index Flanders 
(MMIF), which is a score system developed to report in the context of the European Water 
Framework Directive. The trees have been developed in the R software, and several 
optimisations have been made by altering the dataset (variable and record selections). Models 
were evaluated based on mathematical criteria, ecological insight and user convenience (clarity, 
simplicity and coupling-potential with water quality models of the VMM). The study is a first 
attempt to construct a set of models that can be used by the VMM to evaluate the ecological 
benefits of their river management plans. 
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1. INTRODUCTION 
 

The European Water Framework Directive (WFD) (EU, 2000) requires the European member 
states to achieve a good ecological and chemical surface water quality by the year 2015. The 
implementation of the WFD is based on a type-specific water quality assessment and integrates 
a set of biological quality elements. In Flanders, the biological quality elements 
'macroinvertebrates', 'fish', 'macrophytes', 'phytobenthos' and 'phytoplankton' are used to assess 
the ecological water quality. The biological status of the watercourse for these elements is 
expressed through a scoring system between 0 and 1, known as the Ecological Quality Ratio 
(EQR). The EQR for each element is determined by the deviation exhibited from the expected 
type-specific reference condition. For the biological quality element ‘macroinvertebrates’, the 
good ecological water quality is reached when the EQR amounts to 0.7 (Gabriels et al., 2009).  
In order to achieve a good water quality, the European member states should take measures. 
The impact of these measures on the water quality in Flanders is not straightforward, because 
Flemish rivers are exposed to various external pressures (especially effluents from population, 
industry and agriculture). Managers lack predictive tools to help them decide how they can 
most effectively allocate the limited resources for ecological restoration. The possible 
ecological impact of measures can be predicted using numerical models relating the 
Multimetric Macroinvertebrate Index Flanders (MMIF) with physical-chemical and 
hydromorphological variables. Several techniques are available, but not all are equally suitable 
for supporting river managers in the short run. A structured method for understanding the 
relationships between the MMIF and the physical-chemical and hydromorphological variables 
are regression trees. Regression trees offer an advantage over traditional linear-regression 
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analysis techniques, because they introduce less prior assumptions about the relationships 
between the variables and have an inherent ability to discover patterns in the data that are not 
possible to detect using conventional models. Regression trees derive knowledge rules from the 
data that subsequently can be used to quantify the impact of the proposed measures (Džeroski & 
Drumm, 2003). Regression trees were already used by several authors in an ecological context. 
De’ath (2002) described the relationships between species and environmental characteristics by 
means of regression trees. Pesch & Schröder (2006) used this modelling techniques to relate the 
risk of metal bioaccumulation with site-specific and ecoregional characteristics. Kocev et al. 
(2009) used regression trees to model the quality of vegetation based on GIS-data. Also in other 
scientific branches like medical statistics, regression trees are used (Shi & Lyons-Weiler, 2007; 
Grubinger et al., 2010). The focus of our research is to evaluate which water quality measures 
will be most effective to reach the good ecological water quality. Therefore, regression trees are 
used to relate the MMIF to a selection of physical-chemical and hydromorphological variables. 
 
 

2. MATERIALS AND METHODS 
 

2.1 The data 
 
The ultimate goal of this project was to evaluate to what extent the ecological water quality 
objectives, as stated in the WFD, will be met by environmental investment programmes and to 
decide what water quality measures are most effective in the Flemish context (Figure 1). 
Regression trees relating physical-chemical and hydromorphological variables with the 
biological water quality (MMIF) were developed with that intention. 
Biological, physical-chemical and hydromorphological data were delivered in three databases 
by the Flemish Environment Agency (VMM) and the Research Institute for Nature and Forest 
(INBO). The VMM collected and delivered all physical-chemical data, biological data and the 
sinuosity of the watercourses, whereas the INBO collected and delivered information about the 
slope of the streams, as an indicator of the stream velocity.  
 

 
 
 

 
 
 
 
 

Figure 1 Location of Flanders in Europe. 
 
 

2.1.1 Physical-chemical data 
 

The physical-chemical variables shown in Table 1 cover various points and several years (from 
1989 to 2009). These variables were available in the form of statistical derivatives instead of 
raw data. Mean, median, minimum and maximum and 5% - 10% - 90% - 95% percentiles were 
calculated for each variable over one year. The statistical derivative ‘median’ was used if all 
physical-chemical variables were used for model building. In case exclusively physical-
chemical variables predicted by the water quality model Planification Et Gestion de 
l’ASsainissement des Eaux (PEGASE) were used to construct the models, the same statistical 
derivatives were used as Schneiders et al. (2009). 
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2.1.2 Hydromorphological data 
 

Besides the physical-chemical data also hydromorphological data (sinuosity and the mean slope 
of the watercourse) were used to construct the predictive models. As part of the 
‘Natuurverkenning 2030’ project, a map with the slope of the Flemish watercourses was made. 
This method assumed that the altitude of a watercourse, averaged over a certain distance, is a 
reasonable estimator of the slope of a watercourse and is related to the flow velocity (Dumortier 
et al., 2009).  
The sinuosity of the Flemish watercourses is calculated per segment of 100, 200 or 400m, 
depending on the type of surface water. The sinuosity is then calculated as the ratio between the 
sinuous distance from the beginning to the end of the segment and the straight distance between 
these points. Both slope and sinuosity of the Flemish watercourses were included in the final 
database. 
 
 

2.1.3 Biological data 
 

Concerning the biological assessment of the Flemish watercourses, this study focused on 
macroinvertebrates. The biological database encompassed 5655 MMIF-scores for different 
sampling locations ranging from the year 1989 to 2008. For more than 400 sampling locations 
the biological water quality was assessed at least once in this period. Only three sites were 
biologically assessed each year from 1989 to 2008.  

 
 

Table 1 Observed characteristics in the Flemish watercourses, based on 1716 samples.  
Variable Abbreviation Statistical 

derivative 
Unit Minimum Maximum Mean Standard 

deviation 
A) Input variables for models using all physical-chemical variables 

Biological oxygen demand BOD5 median mg/L 0 235 4 11 
Chemical oxygen demand COD median mg/L 0 530 41 42 
Chloride  Cl- median mg/L 20 9003 202 613 
Conductivity - median µS/cm 184 23500 1121 1509 
Dissolved oxygen DO median mg/L 0.3 21.4 6.6 2.4 
Kjeldahl nitrogen KjN median mg N/L 0 29 4 4 
Nitrate NO3

--N median mg N/L 0 20 4 3 
Orthophosphate oPO4

3--P median mg P/L 0.0 5.1 0.5 0.6 
pH - median - 6.2 8.8 7.6 0.3 
Total phosphorus Pt median mg P/L 0.0 9.6 0.8 0.9 
Sinuosity - - - 1000000 1979618 1055328 971772 
Slope - mean ‰ -10.2 6.5 0.2 1.4 
Suspended sediment - median mg/L 0 592 25 25 
        

B) Input variables for models using exclusively variables predicted by the PEGASE model 
Biological oxygen demand BOD5 maximum mg/L 0 2270 22 105 
Chemical oxygen demand COD maximum mg/L 13 4920 107 240 
Dissolved oxygen DO minimum mg/L 0.0 21.4 3.6 2.2 
Kjeldahl nitrogen KjN median mg N/L 0 29 3 3 
Nitrate NO3

--N median mg N/L 0 20 4 3 
Orthophosphate oPO4

3--P mean mg P/L 0.0 13.3 0.6 0.8 
Total phosphorus Pt mean mg P/L 0.0 19.4 0.9 1.1 
Sinuosity - - - 1000000 1979618 1055327 971772 
Slope - mean ‰ -10.2 6.5 0.2 1.4 
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2.1.4 Coupling of three databases 

 
Regression trees linking physical-chemical and hydromorphological information to the 
biological water quality were constructed. These three data types were separated over different 
databases, consequently these were combined by means of sampling location and sampling 
year. However, often the associated biological, physical-chemical or hydromorphological 
information was not available on a particular sampling location at a specific time. Only those 
sampling locations and years for which biological data as well as hydromorphological data and 
physical-chemical data were measured, were selected for the dataset to induce the regression 
trees. After the aggregation of the different databases a relatively small proportion of all 
available data was retained for the development of regression trees: only for 1716 out of 5655 
MMIF-scores corresponding hydromorphological and physical-chemical data were available.  
 
 

2.2 Regression tree induction 
 

The aim of a regression tree analysis can be stated by explaining a continuous response variable 
Y by a vector of n predictor variables X = X1, X2,...,Xn, which can be a mix of continuous, 
ordinal and nominal variables (Grubinger et al., 2010). Regression trees are hierarchical 
structures, where the internal nodes contain tests on the input attributes. Each branch of an 
internal test corresponds to an outcome of the test and the prediction for the value of the target 
attribute is stored in a leaf. By implementing independent physical-chemical input variables and 
following the hierarchical structure of the tree, these tests lead to the associated predicted 
MMIF-score. For each internal node that is encountered on the path, the associated test in the 
node is applied. Depending on the outcome of the test, the path continues along the 
corresponding branch (to the corresponding subtree), go to the left if the answer is ‘yes’, go to 
the right if the answer is ‘no’. The resulting prediction of the tree is taken from the leaf at the 
end of the path, which is a constant estimate of the response variable resulting from the sample 
mean of the response variable in that leave (piecewise-constant model) (Everaert et al., 
submitted). 
Regression trees were built through applying the R package rpart (R Development Core Team, 
2009). Rules relating the MMIF with physical-chemical and hydromorphological conditions 
were created using the Classification and Regression Trees (CART) algorithm (Breiman et al., 
1984).  
 
 

2.3 Evaluating the regression trees 
 
The performances of the regression tree were assessed by the determination coefficient (R²) and 
the percentage of Correctly Classified Instances (CCI). The determination coefficient is a 
measure of the goodness of fit of the regression model. Its value is always between 0 and 1, but 
the closer the value to 1, the better the model predicts the training data. R² is calculated as 1 
minus the ratio between the residual sum of squares (RSS) and the total sum of squares (TSS). 
In order to have a satisfactory model performance, the CCI should reach at least 70% (Gabriels 
et al., 2007). The stability of the regression trees was tested by randomizing the records in the 
databases and making the models again based on these reshuffled databases. 
The model training and evaluation was based on the 10-fold crossvalidation procedure (Witten 
& Frank, 2005). In 10-fold cross-validation, the original database is randomly partitioned into 
10 subsamples. Of the 10 subsamples, a single subsample is retained as the validation dataset 
for testing the model, and the remaining 9 subsamples are used as training datasets. The cross-
validation process is then repeated 10 times, with each of the 10 subsamples used once as the 
validation dataset. The results from the 10 folds are averaged to produce a single prediction of 
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the dependent variable. Crossvalidation is particularly useful when only a limited number of 
data are available for training and validating the model (Gabriels et al., 2007).  
 
 

2.4 Selection of input variables and record selection  
  

Only 1716 out of 5655 MMIF-scores and related records were retained after the linkage of 
physical-chemical and hydromorphological information to the biological data (MMIF-scores for 
different sampling locations over several years). In this preliminary database some variables 
were not present for one or more records (incomplete measurement campaign). As a solution, a 
second database, following from the first one, was made. The only restriction for the 
composition of this second datafile was the evaluation of all variables for each record (complete 
measurement campaign). In this second database 365 out of 1716 MMIF-scores and related 
records were retained (Table 2).  
 
The water quality model PEGASE predicts the evolution of some fundamental physical-
chemical variables in the Flemish watercourses. The PEGASE model simulates different 
scenarios quantifying the effect of several measures on the physical-chemical water quality 
(Peeters et al., 2009). The translation of the effect of the measures on the physical-chemical 
water quality towards their effect on the ecological water quality is possible by implementing 
the knowledge rules derived with the regression trees on the water quality scenario’s. However, 
some physical-chemical variables like chloride concentration, conductivity, pH, temperature 
and suspended sediments concentration are not included in the PEGASE model. In order to 
have a perfect coupling between the knowledge rules and the water quality scenario’s, a third 
database was made including exclusively variables modelled by the PEGASE model (Table 2). 
Using this dataset, a regression tree was made exclusively including the variables predicted in 
the PEGASE model. Additionally, the physical-chemical variables used to construct the third 
regression tree were not expressed as median values over one year, but their statistical 
derivatives were equal to those used by Schneiders et al. (2009). This tree was compared to 
regression trees based on all available physical-chemical variables. 
 
 

3. RESULTS AND DISCUSSION 
 
Regression trees were built to understand the relationship between the biological water quality 
(expressed as the MMIF) and the physical-chemical and hydromorphological variables. These 
statistical models can predict the ecological effect of water quality measures and help decision 
makers to select those measures that are best implemented to reach these objectives.  
Three different databases encompassing physical-chemical, hydrological and biological data 
were aggregated into one general database. Following from the aggregated database several 
options have been tested. The results of the regression trees are drawn in detail in Table 2. 
 

Table 2 Performance evaluators of regression trees relating physical-chemical and 
hydromorphological data with the biological water quality evaluated through the 

macroinvertebrate community composition. 
Regression 

tree 
Number of 

records 
Variables 

Measurement 
campaign 

R² CCI (%) 

Figure 2 1716 All  Incomplete 0.56 58 
Figure 3 365 All  Complete 0.73 54 
Figure 4 964 PEGASE  Complete 0.57 54 

 
The first regression model has a R² of 0.56 and the CCI is 58% (Table 2). This model results 
from a database that includes all physical-chemical variables provided by the VMM (Table 1, 
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part A). In total 1716 records were used, but the measurement campaign was incomplete, which 
means that for some records one or more variables were missing. The median (med) value of 
thirteen basic environmental variables (slope, sinuosity, BOD5, COD, Cl-, conductivity, DO, 
KjN, NO3

--N, oPO4
3--P, pH, Pt and suspended sediment) calculated over one year at the 

particular sampling place was used (Table 1, part A).  
At the root, the median total phosphor concentration has a major influence on the ecological 
water quality. In case the median phosphorus concentration exceeds 0.57 mg P/L, a watercourse 
can reach maximally a poor ecological water quality (Figure 2). The regression tree, shown in 
Figure 2, does not succeed to predict a good or high ecological water quality.  
 

 
Figure 2 Regression tree relating the ecological water quality, assessed through the EQR for 

macroinvertebrates (MMIF), with basic physical-chemical and hydromorphological variables. 
The database contained 1716 records, but for some records one or more variables were missing. 

 
The second regression model can, contradictory to the first model, predict a good ecological 
water quality (Figure 3). Basically, the only difference between the first two models originates 
from a small change in the database. Unlike the first model, the second regression tree results 
from a database with a complete measurement campaign, all variables were present for all 
records. This adjustment results in a regression tree with better performance (R² = 0.73; CCI = 
54%) (Table 2).  
The first node of the second regression tree shows that the median conductivity is important for 
the ecological water quality (Figure 3). If the median conductivity exceeds 677 μS/cm, a 
watercourse can maximally reach a moderate water quality. A good ecological quality can be 
obtained only if the sinuosity of the watercourse is sufficiently high. In the context of the WFD 
this tree is promising due to his ability to differentiate between the moderate and good 
ecological water quality.  
 
The best performing models are based on complete datasets. In case incomplete measurement 
campaigns were used, the performance evaluators declined drastically. In order to have the 
ability to make more reliable models, the VMM should focus on the completeness of their 
measurements, rather than increasing the number of monitored sites. It is better to monitor all 
basic physical-chemical variables in each location, instead of measuring some special variables 
randomly without measuring other crucial physical-chemical variables. 
 
The PEGASE model predicts a limited number of physical-chemical variables. The coupling 
between the different scenario’s and the regression models is possible if the same variables are 
included in both databases. Therefore, only those variables included in the PEGASE model 
were selected to make the third model. The minimum (min), average (avg). median (med) or 
maximum (max) value of eight basic environmental variables (slope, sinuosity, BOD5, COD, 
DO, KjN, NO3

--N and oPO4
3--P) calculated over one year at the particular sampling place was 

used (Table 1, part B). 
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The resulting model cannot predict the good and high ecological water quality (Figure 4). 
Although the database was complete, the performances declined compared to the second model 
(R² = 0.57 and CCI = 54%) (Table 2). The exclusion of some physical-chemical variables, 
having a major impact on the ecological water quality, probably caused this decrease. Variables 
like conductivity giving an integrated insight in the overall water quality were selected in the 
first two regression models. However, the PEGASE model does not predict the conductivity of 
the watercourses. Therefore, the inclusion of the conductivity in the regression trees was not 
convenient from a model integration point of view. Including such variables in the PEGASE 
models will further optimize the models produced.  
 

 
 Figure 3 Regression tree relating the ecological water quality, assessed through the EQR for 
macroinvertebrates (MMIF), with basic physical-chemical and hydromorphological variables. 

The database contained 365 records, all variables were present for all records. 
 

 
Figure 4 Regression tree relating the ecological water quality, assessed through the EQR for 

macroinvertebrates (MMIF), with basic physical-chemical and hydromorphological variables. 
The database contained 964 records, all variables were present for all records. 

 
A sensitivity analysis can be used to see how different values of an independent variable impact 
a particular dependent variable under a given set of assumptions. The regression model shown 
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in Figure 4 was selected to illustrate the effect of changing DO and KjN concentrations on the 
ecological water quality expressed as the MMIF. In order to see the real impact of both 
variables on the MMIF, it was assumed that the other independent variables included in the 
regression tree (COD, slope and oPO4

3--P) caused no restrictions. Therefore, in the dataset used 
to perform the sensitivity analysis, a constant value was given to these variables so that the 
highest possible MMIF could be obtained. In the dataset the KjN resp. DO concentration varied 
and the effect of these changes on the MMIF was evaluated (Figure 5).  
 

      
Figure 5 Sensitivity analysis illustrating the effect of changing Kjeldahl nitrogen (KjN, left) 
and Dissolved oxygen (DO, right) concentrations on the ecological water quality (MMIF). 

  
The impact of a changing KjN concentration on the MMIF is shown in the left part of Figure 5. 
A gradual increase of the KjN concentration (from 0.0 to 10.0 mg N/L)  results in a decreasing 
MMIF (from 0.63 to 0.23) and thus in a lower ecological water quality. One could expect the 
MMIF being higher at KjN concentrations ranging from 0 to 2 mg N/L. However, in the 
original database only a limited number of sites had a high or good ecological water quality. 
Therefore, the model was not sufficiently trained to predict these water quality classes. 
Watercourses with a KjN concentration lower than 3.48 mg N/L are predicted having a 
moderate ecological water quality, whereas those with a KjN concentration higher or equal to 
4.38 mg N/L are predicted as bad. Watercourses with a KjN concentration ranging from 3.48 to 
4.37 mg N/l are evaluated having a poor ecological water quality. One can conclude that the 
higher the KjN concentration, the lower the ecological water quality. 
The impact of a changing DO concentration on the MMIF is shown in the right part of Figure 5. 
Whereas the impact of the KjN concentration on the MMIF was substantial, the impact of DO 
seems smaller. Increasing the DO concentration from 0.0 to 15.0 mg/L results in an increase of 
the MMIF from 0.51 to 0.63, the only tipping point found was a DO concentration of 4.68 
mg/L. Studying Figure 4, one can see that DO is also included in other decision rules (eg. Left 
branch of the regression model), but due to the assumption that other independent variables 
(COD, slope and oPO4

3--P) had no limiting effect in determining the MMIF, the branches 
including these rules were neglected during the sensitivity analysis. 
 
Two main problems were revealed during the research. In order to make more performant 
models in future, additional information should be gathered in sites with a high or good 
ecological water quality. Also the inclusion of other physical-chemical and hydromorphological 
variables in the dataset would be beneficial for the predictive power of the models. Therefore, 
the water quality model PEGASE should predict some additional variables so that these can be 
included in the models.  
 
 

4. CONCLUSIONS 
 

Regression trees relating the biological water quality with physical-chemical and hydrological 
variables can predict the ecological effect of water quality measures taken by the European 
member states. These data-driven models can support decision makers to select measures that 
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are most effective and cost-efficient to reach the objectives stated by the WFD. In order to make 
reliable models, the VMM better changes its data collection strategy towards databases where 
all variables are gathered during each sampling event. Additionally, some integrative variables 
(like conductivity) should be included in the PEGASE model.  
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