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Abstract: Three variations of a simple in-stream habitat suitability model were implemented 
and the effect on output for one organism at 22 sites on one short section of a river was 
examined.  The model uses only two factors, depth and velocity, to calculate quality and a third 
factor, width to quantify utility.  The implementations were based on 3 multi-criteria evaluation 
approaches: Weighted Average, Fuzzy Sets and Bayesian probability.  There was broad 
agreement between the formulations but important differences in detail.  The model outputs 
indicate that uncertainty arising from model formulation is significant and can have a bearing 
on planning decisions.  There is a complex interaction between the formulations and the 
characteristics of the sites.  Suitability models should be used thoughtfully and implemented in 
ways that: facilitate exploratory analysis; present ranges of possible outputs; present indicators 
of uncertainty; and facilitate back tracking to explain the outputs.    
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1 INTRODUCTION 

Environmental management decisions have to be taken in the context of uncertainty.  Nowhere 
is this more the case than in relation to river habitat.  Although gauging river flows is itself a 
challenging science, gauging river habitat is more difficult because: (1) it can vary continuously 
over spatial scales varying from a few m to the whole catchment (Lammert and Allen, 1999; 
Folt et al., 1998); and (2) the impacts of changes in drivers (e.g. river flow) are continuous in 
time and space.  Although the relationship between habitat and use of habitat by organisms is a 
complex issue, there is still an academic focus upon determining the habitat template and the 
effects of interventions (e.g. flow regulation) on that template for rivers that are, effectively, 
‘ungauged’ because of the difficulty of measuring ecological elements at scales that match the 
spatial and temporal variability in the drivers of those elements.  Thus, habitat template 
modelling is an important element of river management (e.g. Leclerc, 2005).  

This paper looks at one particular source of uncertainty in habitat modelling, model 
formulation.  Three alternative implementations of a habitat suitability model: (1) Fuzzy sets; 
(2) Bayesian probability; and (3) Weighted Average approaches, are compared.  The driving 
question is: could different model formulations lead to different decisions?   
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2 THEORY 

2.1 Habitat suitability analysis  

Habitat suitability analysis (HSA) is a methodology for informing environmental conservation 
and restoration decisions.  The viability of species and organisms depends fundamentally on the 
availability of suitable habitat to support them.  By analysing habitat in a model framework, in a 
way that recognises the interactions of factors that influence habitat, it is possible to establish a 
base-line, to estimate the predicted effects of management interventions and to monitor habitat 
change.  Here, the focus is on instream river habitat, driven by two of the most common factors 
used to determine habitat suitability: flow depth and flow velocity (Lane et al., 2006).  

This kind of analysis has a very long and established history.  It is based upon the assumption 
that the ecologically-usable habitat in a river depends on several key parameters, notably flow 
velocity and depth, wetted perimeter, substrate, water temperature and pH (e.g. Elso and Giller, 
2001, Maddock et al., 2001, Leclerc, 2005).  Traditionally, emphasis has been placed upon 
hydraulic variables, notably velocity, depth and wetted perimeter because: (1) they are 
important controls upon organism metabolism, both directly and indirectly, controlling the 
balance between access to food and expenditure on swimming; and (2) the spatial and temporal 
changes in higher order parameters (such as pH and temperature) should track changes in 
velocity and depth to some extent.  Width, depth and velocity are commonly incorporated into 
some form of habitat score such as PHABSIM (e.g. Milhous et al., 1984), which can be used to 
determine habitat suitability in situations where flow is uniform, or approximately uniform 
(Milhous et al., 1989).  Concerns with the simple hydraulic basis of PHABSIM have resulted in 
a much wider research field concerned with developing hydraulic models of habitat, including 
development of more sophisticated one-dimensional hydraulic treatments as well as two-
dimensional habitat modelling (e.g. Leclerc et al., 1995, 1996; Tiffan et al., 2002).  The latter is 
important because the habitat that can be used by an organism varies continually in space 
(cross-stream and downstream) but may be prohibited by the data and computational demands 
when habitat assessment is needed at the scale of entire river basins.  This is the subject of 
much debate in the habitat modelling literature (see Leclerc, 2005).  However, there is an 
important additional issue that is the focus of this paper.  It is now recognised that the choice of 
habitat suitability analysis is about more than the choice of appropriate hydraulic representation.  
Rather, it must capture the severe uncertainty associated with only poor or even no measured 
ecological data.  Likewise, different suitability analyses use models with very different kinds of 
assumptions over how to handle this uncertainty as well as how to combine the different criteria 
(e.g. depth, velocity) to determine habitat.  

2.2 Multi criteria evaluation   

Habitat suitability analysis is a form of multi-criteria evaluation (MCE).  MCE maps physical 
attributes such as depth to a value.  Value is an abstraction; it cannot be measured directly but is 
inferred from measurements.  Value can be expressed in two main ways: as a number such as 
an index or score (e.g. 80 out of 100), or as a class (e.g. "Good").  The transformation from 
attribute to value is by a value function.  The second step is to combine multiple values into a 
single value using a combination process.  Before the values can be combined they must be 
normalised to a single scale to avoid implicit weighting.  If criteria are not equally important 
they should be explicitly weighted.  There are two interpretations of value: quality and utility.  
Quality is calculated by the value and combination functions.  Habitat utility depends on 
intrinsic quality and how much there is, so there is a third step - the utility function.  

MCE is a huge field with a large literature and many formal models (see Jankowski 1995).  
Here three approaches are considered.  The first approach is pragmatic.  Attributes are scored 
independently, on a common scale of value, and then combined by taking the mean of each 
attribute score (e.g. Jiang and Eastman, 2000).  In a two-step process the value functions map 



C.J.Brookes et al. A comparison of Fuzzy, Bayesian and Weighted Average formulations of a habitat model 

attributes to scores and the combination function averages the scores.  Because criteria can be 
weighted this method is known as weighted average (WA).     

The next two approaches, Fuzzy and Bayes, address uncertainty by using soft classes.  In 
conventional Boolean classes membership is binary and exclusive.  Soft classes allow partial 
membership of classes and multiple memberships of alternative classes.  Partial membership 
expresses how definite the classification is.  An entity can simultaneously be classed as, say, 
both "good" and "medium" with different degrees of definiteness.  For example, if there are 
three classes, poor, medium and good, an entity can be classified using a membership vector of 
the form {M(poor), M(medium), M(good)}.  A vector {0,100,0} indicates certainty that the class is 
medium, {10,80,10) indicates less certainty while {33,33,33} says all classifications are equally 
likely.  The value function maps attributes to class membership functions for each criterion.  
The next step is to combine criteria classes to a resultant classification using cross-
memberships.  With 2 criteria and 3 classes for each there are 9 class combinations.  These can 
be mapped onto fewer resultant classes as illustrated in Table 1 of section 3 where good-good 
maps to excellent and both good-medium and medium-good map to very good.   

Fuzzy and Bayes differ in the interpretation of membership and, consequently, the calculation 
of cross-membership.  In Fuzzy, partial membership represents vagueness about the meaning of 
the classes while in Bayes partial membership represents the probability of membership (Fisher 
2000).  Fuzzy relates to conceptual uncertainty and Bayes relates to factual uncertainty.  The 
Bayesian approach is grounded in probability theory and is consistent with statistical error 
modelling (Aspinall and Veitch 1993).  It is the basis for Bayesian Belief Networks, which 
integrate quantitative and qualitative uncertainties in a single rigorous framework (Henriksen et 
al., 2006).  The Fuzzy approach is based on Fuzzy set theory, which was developed to address 
the problem of vagueness (Fisher 2000, Legleiter and Goodchild 2005).  Implementation of 
Fuzzy is less rigorous than Bayes (Fisher 2000) and here only one typical implementation is 
considered.  The Bayesian class combination function is the joint probability.  With reference to 
Table 1, the probability of habitat being excellent is the joint probability that depth is good and 
velocity is good.  For Fuzzy it is a set operation to calculate the intersection of two classes.  
Typically, it is implemented as a fuzzy_and (see Box 1) operator  (Fisher 2000).  The Fuzzy and 
Bayes cross membership functions are shown in Box 1.    

Box 1 Fuzzy and Bayes Cross membership functions 

3 THE IN-STREAM HABITAT MODEL 

The in-stream habitat model (ISH) uses two criteria, flow depth and flow velocity, to evaluate 
habitat quality.  Separate value functions were created for each criterion using presence/ 
absence data from the literature.  Problems in this approach are discussed elsewhere (Lane et 
al., 2006).  Each numerical value of depth or velocity maps to a quality value.  In the original 
model (Lane et al., 2006) quality is expressed as fuzzy membership of 3 classes: good, medium 
and poor.  Combining depth and velocity criteria gives 9 cross membership possibilities but 
these are mapped to 6 final classifications of habitat quality: nil, very poor, poor, good, very 
good and excellent.  Table1 shows the correspondence between the cross memberships and the 
final habitat quality class.  To calculate utility, quality is expressed as a score, from 0 for Nil up 
to 6 for Excellent, (Table 1) and multiplied by the width.  

Given two membership vectors {X1, X2,…Xi} and {Y1,Y2..Yi} for criteria X and Y,  

there are i*j cross-memberships Mij  

Bayesian joint probability  Mij = Xi * Yj for all i,j  

Fuzzy_and   Mij = min(Xi,Yj)  for all i,j  
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Table 1.  Cross-classifications and associated scores 
Depth Velocity 

Poor Medium Good 

Poor Nil-0 Very Poor-1 Poor-2 

Medium Very Poor-1 Good-3 Very Good-4 

Good Poor-2 Very Good-4 Excellent-6 

 

The Bayes and Fuzzy methods use different combination functions and generate different cross 
membership values, as explained above.  Utility is also calculated differently.  For Bayes   
utility is based on expectation, where expectation is the sum of  (probability * score) for each 
class.  So for example, if excellent habitat scores 6 and the membership is 80%, and good 
habitat scores 4 and the membership is 20%, the overall score is (4.8 plus 0.8) which gives 5.6.  
Thus Bayes quality is a continuous function.  Fuzzy uses the most likely outcome.  The class 
with the highest membership is selected to give a single, Boolean, class.  This means that the 
fuzzy model generates discrete quality scores {0,1,2,3,4,6}.  The WA method maps attribute 
values map to a criterion score in the range 0 to 3.  The combined quality score is thus between 
0 and 6 giving the same range as the Fuzzy and Bayes methods.  

Each site is a cross-section of a river channel and comprises a number of elements each with a 
modelled velocity, depth and width so there is a final step to generate a summary value for each 
site.  Quality and utility are modelled per element.  Quantity is expressed by scaling to width.  
Utility of a site is the sum of the utility of each element.  Aggregation means that at the site 
level Fuzzy quality is not restricted to integers and can be any value from 0 to 6.  With factors 
d(depth), v(velocity), classes Mij and  scores Sij,, quality per element, Q is :   

3.1.1 WA:    Q = (Qd + Qv) /2 
3.1.2 Fuzzy:    Q = Sij where i,j are given by Mij = max(Mij) for all i,j 
3.1.3 Bayes: Q = sum( Mij * Sij) for all i,j 

4 PROCEDURE AND RESULTS 

The models were run for a single organism, adult brown trout, on 22 sites on a section of the 
River Don in Sheffield.  The same habitat requirements were used in each run.  Requirements 
were input as vectors specifying class, class boundaries and precision  ({poor,min,max,P}) per 
class, criterion and species.  The precision parameter P makes the classes soft.  A value has 
100% membership if it lies between (Min + P) and (Max - P), and 0% membership if it is 
outside (Min - P) to (Max + P).  Intermediate membership values are interpolated by a linear 
function.  High values of P represent large uncertainty.  The Bayes and Fuzzy models used the 
same membership function.  The WA value function was derived from the same input data, 
essentially by multiplying the membership by the relevant class quality score (3 for high, 1 for 
medium, 0 for poor) for each criterion (see Figure 1).  P is not used in WA.  
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Figure 1.  Relationship between Value (dashed) and Fuzzy membership (solid) functions 

Before running with field data the models were run with depth and velocity values in the range 
0 to 1.5.  Figure 2 plots quality against depth and velocity and shows some differences between 
the models.  The models produce different ranges of outputs: Fuzzy (0,1,2,4), Bayes (0-3.56) 
and WA (0-6).  This is a consequence of the high uncertainty in the habitat requirements for 
brown trout.  No depth or velocity results in un-ambiguously good classification but many 
values are unambiguously poor.  Also, off-diagonal classifications (Table 1) are more likely 
than the diagonals.  For example, very good results from a combination of good-medium or 
medium-good while only one possibility, good-good, leads to excellent.  There is thus a bias 
towards lower scores in the Fuzzy and Bayes models but not in WA where there is no 
uncertainty treatment of the input.  Another difference in the models is the trade-off between 
factors.  As Table 1 shows, medium-medium is better than good-poor in the classification 
models whereas in WA (1+1) is less than (3+0).  The integer values for Fuzzy are the result of 
hardening the fuzzy classes into a single Boolean class for output.  The plots indicate 
uncertainty in the outputs; steep gradients indicate high sensitivity to the inputs. 

 

Figure 2.  Quality as a function of depth and velocity 

With the field data, there was enough general agreement between the models in terms of quality 
and utility to indicate that all three are consistent with each other.  Flow velocities at most sites 
are too high for good habitat and most sites would be classed as poor by the velocity criterion.  
In contrast the depth is often good.  Thus the expected upper bound for quality with the given 
sites is nearer 3 than the theoretical maximum of 6.  Table 2 shows the minimum and maximum 
values for quality and utility produced by each model. 

Table 2.  Range of Quality and Utility values for each model. 
Model Average quality Utility 

min max min Max 
Fuzzy 0.99 2.09 7.4 32.7 
Bayes 0.94 2.37 6.1 37.0 
WA 1.19 3 7.8 32.1 



C.J.Brookes et al. A comparison of Fuzzy, Bayesian and Weighted Average formulations of a habitat model 

 

The WA model has a similar range of values to Fuzzy and Bayes but has higher minimum and 
maximum values.  This can be explained by the way that WA trades-off depth and velocity 
scores.  A poor velocity (0) can still generate an aggregated score of 3 if the depth is good, 
whereas for Bayes and Fuzzy the best would be 2 (see Table1).  For Bayes and Fuzzy the 
velocity has to be classed as Medium before the overall score can be 3 or more.  With regard to 
utility, Fuzzy and WA are more similar to each other while Bayes has a larger range and more 
extreme values.  The following section compares the results on a site-by-site basis.   

Figure 3 shows quality per site for each model, sorted by Fuzzy quality.  In general the 
differences between the models appear systematic; WA generates the highest scores, then Fuzzy 
with Bayes least.  However, two sites, 2 and 13, have higher scores for Bayes, and in fact 
reverse the normal ordering of scores from WA-Fuzzy-Bayes to Bayes-Fuzzy-WA.  These two 
sites are the highest ranked by the Bayes method but not by the other models.  WA ranks 10 
sites higher than site 13 and Fuzzy ranks 5 sites higher than site 2.  Similarly, the models do not 
agree on the worst sites, which are: 7 and 12 (fuzzy), 4 and 14 (Bayes) and 2 and 12 (WA).  
Perhaps the most interesting result is that site 2 is ranked 2nd highest by Bayes and 2nd last by 
WA.  The anomalous results for site 2 indicate uncertainty in the output.  This is supported by 
looking at the membership vector used to generate the summary score.  For site 2 it is {13, 
27,19, 14,20,7} compared to the more typical site 1 {25, 36, 38, 0, 0, 0}.  

 

Figure 3. Quality by site for each model (ordered by Fuzzy) 

A more detailed look at site 2 and site 21, which has a similar quality score by the Fuzzy model, 
reveals how the models differ.  Figure 4 shows the quality scores along the cross-sections.  Site 
2 is wider and shallower than site 21 and the velocity is lower.  At site 2, velocity is medium 
and depth is poor/medium.  At site 21 velocity is poor while depth is good.   The improvement 
in velocity more than compensates for the poorer depth in the Bayes model but not the WA.    

 Figure 5 shows utility per site for each model, sorted by Fuzzy.  Considering utility, the models 
agree more on the best and worst sites.  Site 13 is ranked highest by all 3 models.  The worst are 
14 and 12 (Fuzzy), 14 and 18 (Bayes) and 14 and 12 (WA).  At sites 12, 13 and 14 there is a big 
change in width that damps the quality differences and that explains the change in utility values 
and accounts for the agreement between the models (Table 3).  

Table 3. Range of Quality and Utility scores for each model 
Site Width Fuzzy Bayes WA 

Quality Utility Quality Utility Quality Utility 
12 6.51 1.14 7.41 1.13 7.33 1.20 7.79 
13 15.60 2.1 32.73 2.37 37.03 2.02 32.09 
14 6.03 1.28 7.71 1.01 6.1 1.93 11.65 
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Figure 4. Comparison of details for site 2 and site 21 

 

Figure 5. Utility calculated by Fuzzy, Bayes and Weighted Average - (ordered by Fuzzy) 

5 CONCLUSION AND RECOMENDATIONS 

Looked at broadly, the models appear to agree, but in detail there are some big differences.  
Notably two models generated almost completely opposite quality results for one site.  The 
models are very sensitive to the physical characteristics of the sites, as implied by site 2.  
Differences between the models are greater with respect to quality than utility because of the 
masking effect of width.  In each model the sites with highest and lowest utility are consecutive 
sites on the river so although the different models do not agree in detail for each site, they do 
direct attention to the same part of the river.   

Model implementation is a source of uncertainty and different formulations could lead to 
different decisions.  This uncertainty should be conveyed to the end user.  Standard statistical 
error modelling expresses both a range of values and confidence that the true value lies within 
that range.  While the Bayes and Fuzzy models represent and propagate uncertainty in habitat 
requirements their output classifications and the WA scores do not convey uncertainty in the 
output.  Taken together, the range of outputs produced by the three implementations indicates a 
range of possible outputs.  This approach should be extended, using Monte-Carlo or similar 
methods, to generate a range of outputs in response to uncertainties in data, habitat 
requirements and model formulation.  Models should output as much information as possible so 
that users can examine what leads to particular results.  This would help users to assess the 
confidence in the outputs.  
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