
International Environmental Modelling and Software Society (iEMSs)
 2010 International Congress on Environmental Modelling and Software

Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada
David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.)

http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings

OpenMI 2.0 - What's new?

Gennadii Donchyts
1,2

, Stef Hummel
1,3

, Stanislav Vaneçek
1,4

, Jesper Groos
1,5

,

Adrian Harper
1,6

, Rob Knapen
1,7

, Jan Gregersen
1,8

, Peter Schade
1,9

,

Andrea Antonello
1,9

, Peter Gijsbers
1,10

1
 The OpenMI Association, Lelystad, The Netherlands

2
Stichting Deltares, Delft, The Netherlands Gennadii.Donchyts@deltares.nl;

3

Stichting Deltares, Delft, The Netherlands Stef.Hummel@deltares.nl;
4

DHI, Prague, Czech Republic, S.Vanecek@dhi.cz
5

DHI, Hørsholm, Denmark, jgr@dhigroup.com
6

MHW Soft, Wallingford, UK Adrian.Harper@wallingfordsoftware.com
7

Alterra, Wageningen, The Netherlands Rob.Knapen@wur.nl
8
 Hydroinform, , Denmark Gregersen@hydroinfrom.com

9
 Bundesanstalt für Wasserbau, Germany Peter.Schade@baw.de

10
University of Trento, andrea.antonello@gmail.com

10
Deltares USA Inc., Silver spring, Maryland, USA Peter.Gijsbers@deltares-usa.us

Abstract: The first version of the OpenMI standard was developed as a joint effort of

several European research organizations. OpenMI stands for Open Modelling Interface and

aims to deliver a standardized way of linking environmental models at run -time. In the new

version of the standard several new goals were defined based on experience obtained during

migration and use of the OpenMI-compliant models. This includes on one side different IT

aspects such as better object-oriented design of the standard and re-use of well-known

engineering practices and patterns. On the other side, after successful implementation of

OpenMI in many environmental models it was also decided to extend scope of the OpenMI

standard to a broader set of applications such as GIS data types, monitoring databases,

running models in parallel (versus sequential pull-driven approach), improved workflow

management and many others. This paper gives the details of OpenMI 2.0.

Keywords: Open Modeling Interface; linking; model interoperability; integrated modeling

1. INTRODUCTION

The first version of the OpenMI standard was developed with an extensive focus on

coupling of the numerical models, primarily in the field of surface and ground water

hydraulics. Although notice was taken of the needs of other domains, e.g. economics, this

hardly influenced the outcome of the OpenMI version 1.4. However, usage of OpenMI in

these other domains, e.g. in the SEAMLESS project (Knapen et al. [2009]), or during

application of OpenMI for web-based systems (Goodall [2007]) have shown that OpenMI

requires considerable improvements to fit more properly to these type of applications (see

Gijsbers et al. [2010], for details and argumentation).

Also for other reasons OpenMI turned out not to be perfect yet. While the list of OpenMI-

compliant models grew
1
 it became clear that there were more issues to be considered then

the domain area only. Better support was needed for time independent models, for algebraic

models, and for GIS based applications.

Another important reason to adjust OpenMI was more technical: improve the quality of the

standard by applying more object-oriented design patterns (Gamma et al. [1994]), and by

using language and platforms specific features such as events, properties and standard

collections, as available in both the .NET Framework and java. Making the standard more

1 See the list of OpenMI-compliant models on http://openmi.org

http://openmi.org/

G. Donchyts et el. / OpenMI 2.0 – What’s New?

intuitive and self-explaining while at the same time expanding its scope was the main goal

of the OpenMI Association's Technical Committee when developing OpenMI version 2.0.

An important additional aspect taken in account was the fact that the implementation of an

OpenMI 1.4 component usually relies quite heavily on the OpenMI 1.4 Software

Development Kit. For computational cores this SDK provides more intuitive interfaces then

the ones defined in the standard itself, so often component developers implemented the

SDK's IEngine/IRunEngine interfaces instead of the more abstract ILinkableComponent in

the standard. In the OpenMI 2.0 this will not be the case anymore, since

ILinkableComponent (Figure 1) now better covers handling of the computational cores.

Figure 1 ILinkableComponent class diagram

The goal of this paper was to provide a technical overview of all major changes in OpenMI

2.0. The list below summarizes some main code changes of the OpenMI 2.0 which will be

discussed in the present article:

 Combine all three concepts of Where, When and What in the IExchangeItem,

whereas in the previous version Where, When in the previous version. What was

part of the ILinkableComponent in the OpenMI 1.4.

 Remove the ILink interface and apply the Observer design pattern by connecting

IOutput and IInput items by means of a provider/consumer relationship.

 Separate the concepts of Perform Computation and Retrieve Values. In OpenMI

1.4 they were combined in the GetValues () call.

 Make ILinkableComponent behave like a workflow activity, changing its status

depending on operation performed.

 Use of the Adapter design pattern for data operations.

 Introduce language and platform-specific features into standard by allowing use of

events, properties and standard collections Introduce loop-driven approach to run

components

 Introduce, in addition to the pull driven control flow, a loop-driven control flow

approach.

 Improve the management of a component's persistent state(s)

 Extend the exchangeable types of values with categorized variables that can

represent either nominal or ordinal value categories

 Simplify time-related interfaces.

 Make OpenMI more OGC-friendly

2. NEW FEATURES

This paper discusses the technical details related to the mentioned changes, and provides

argumentation on why they were applied.

2.1 Combining concepts of What, Where and When within IExchangeItem

G. Donchyts et el. / OpenMI 2.0 – What’s New?

From its beginning OpenMI used a concept of What, Where and When in order to describe

values exchanged between different components. Probably the main change in

implementations of these concepts in OpenMI 2.0 is that IExchangeItem now holds all meta

information describing all of them (see Figure 2).

Typical steps required to exchange values in the OpenMI 1.4 are:

 Query information about element sets (Where) and quantities (What) from the

exchange items defined in components.

 Create links between source and target components, element sets and quantities

and add these links to the corresponding components.

 Prepare and initialize components.

 Perform the call GetValues(ITime time, string linkID) on a component, which on

its turn can also pull values from other components by performing the GetValues

call. The time for which values are required is provided as an argument to the

GetValues method.

Note that Where and What are mainly used at configuration time and are defined in

IExchangeItem, while When is used at a runtime as an argument to

ILinkableComponent.GetValues call. IExchangeItem in OpenMI 1.4 did not provide any

information about time, nor did it allow querying values available for an exchange item.

In OpenMI 2.0 all three aspects: What, Where and When are defined on IExchangeItem

level, which results in a better separation of concepts. Figure 2 shows the interfaces used,

and gives an example of an exchange item, e.g. water level, on an element set containing 5

elements (e1-5) and time set containing 2 time steps (10:00, 12:00). So in OpenMI 2.0

IExchangeItem is fully responsible to hold all meta-information plus values being

exchanged while ILinkableComponent is responsible for performing an operation, e.g.

query database, convert raster data to something else, and perform a computation for a few

time steps, etcetera.

Figure 2 IExchangeItem class diagram, concepts of Where, When and What

Note that in the new version IExchangeItem uses a property called ValueDefinition instead

of Quantity in the previous version. The value definition allows the usage of either a

Quantity or a Quality, in order to define values for nominal or ordinal variables, e.g. land

use types, concentration level (low, medium high). Quantity or Quality are defined as

interfaces extending IValueDefinition.

2.2 Linking components, remove ILink and use of an Observer design pattern

1.0 1.0

1.0

1.5

1.0

1.0

1.2

1.1

1.2

1.0

10:00 12:30

e1

e2

e3

e4

e5

t1 t2

10:00 12:30

e1

e2

e3

e4

e5

t1 t2

1.0 1.0

1.0

1.5

1.0

1.0

1.2

1.1

1.2

1.0

G. Donchyts et el. / OpenMI 2.0 – What’s New?

In the new version we do not use ILink anymore. For several reasons the link turned out to

be more a burden then a benefit: confusion arises when more than one link has been

connected to one input item; even for simple value retrieval a full link has to be created; the

link needs a target component, so the values retriever always has to be a linkable

component itself. In the new version we use the Observer design pattern defined on

IExchangeItem level, see Figure 3. The figure shows the IInput and IOutput interfaces

which represent different types of exchange items. The main difference from the previous

version is that exchange items are now fully self-contained, responsible to keep all

information which can be exchanged for a single variable, including values currently

available. The linkable component is responsible to fill in values in all these exchange

items. Implementations of the exchange items can be used and tested separately from the

components.

A single output exchange item may provide values for multiple input exchange items. At

configuration time output exchange items must be connected to input exchange items by

means of the Consumers and Provider property. These properties define all established

links, and therefore can be used to check how exchange items are connected. Once all

exchange items are connected, components owning these exchange items may generate

values by means of the Values property. Usually this happens after the component has

performed some work (at the end of the Update() call, see chapter 6 for more details).

Another way to retrieve data, more known to users of OpenMI 1.4, is to perform a

GetValues(IExchangeItem query) call on output exchange item. In OpenMI 2.0 this method

is defined on the output exchange item instead of on ILinkableComponent, as it was in the

previous version.

Figure 3 Output and Input exchange items

2.3 Use of Adapter design pattern for data operations

OpenMI 1.4 allowed user to define various data operations when linking exchange items.

However, they were not allowing performing different conversions in a chain, and the use

of the data operations was not intuitive enough. They were defined on

IOutputExchangeItem, and then had to be passed to the ILink implementation. OpenMI 2.0

simplifies this logic by introducing another type of output exchange item, called

IAdaptedOtuput, which can wrap any output exchange item (adaptee) in order to perform a

certain conversion.

G. Donchyts et el. / OpenMI 2.0 – What’s New?

Figure 4 Adapted output items

2.4 Separating compute and accessing values logic in the ILinkableComponent

The new version of OpenMI provides much better control over the workflow by means of

separation of “Perform Calculation” and “Query Values” steps. In the previous version

there was no way to query already computed values from the component unless component

itself provided some kind of buffering (e.g. using buffer classes available in SDK). In the

new version this mechanism was completely reworked so that current values can be queried

at any time. As well as buffered values, if buffering is implemented using IAdaptedOutput.

Additionally the new standard allows checking the status of the component, which might be

required in order to know if values available on exchange items are up -to-date. Otherwise

the Update() method must be called on the component. The table below summarizes

differences between steps required to perform computation and query values in both

versions.

Table 1 Querying values in OpenMI 1.4 and 2.0

Version Perform operation Q uery values

1.4 IValueSet ILinkableComponent.GetValues(ITime time, string linkId) – returns set of
values provided by the source component of link defined between 2 components,
quantities and element sets

2.0 ILinkableComponent.Update() –
updates component to the next valid
state. Usually calling this methods

performs a time step, queries data
from a database or performs any other
activity required to generate values in
component output exchange items

IOutput.Values – property which can be used
after component was updated and values were
set on all required output exchange items.

IValueSet IOutput.GetValues(IExchangeItem
query) – returns set of values for a given
value definition, times, element set provided

by query. If necessary – it may call update of
the component where this exchange item is
used, and perform GetValues calls on other

components

As can be seen from the table, OpenMI 2.0 provides 2 ways to query values from exchange

items. The Values property can be used to get values which were generated previously,

mainly after the Update() call. Additionally, the GetValues() method can be used to get a

specific set of values from the exchange item. This is very useful for instance when target

component / exchange item is not interested in all values available in the output exchange

item but only in a subset. When specifying a query time that lies in the future, the providing

component will have to propagate itself to the requested time; this leads to exactly the same

pull driven control flow as in OpenMI 1.4.

2.5 Making ILinkableComponent behave like a workflow activity

Before version 2.0 OpenMI was mainly used in a single threaded environment.

Components were not supposed to be used from another thread during e.g. GetValues()

call. The new version does not have this limitation anymore. ILinkableComponent provides

a new property LinkableComponentStatus Status { get; } which allows to determine what

the component is doing right now. This opens new possibilities to use of OpenMI. However

developers of the components should implement their components as thread-safe, if these

components are expected to be used in a multi-threaded environment. In fact it means that

G. Donchyts et el. / OpenMI 2.0 – What’s New?

IOutput.GetValues() andValues property of IInput and IOutput interfaces must be thread-

safe. The OpenMI 2.0 does not imply that all its methods need to be thread-safe, for

example linking components to each other most probably will happen in a single-threaded

environment.

Figure 5 Linkable component state chart diagram

2.6 Pull and Loop driven approach –the actual data exchange between components

In OpenMI 2.0 components can support two ways of control flows, called pull-driven and

loop-driven. In the pull-driven control flow (default) components work like in OpenMI 1.4,

Which means that a component may call its own Update(), as well as the GetValues()call

on output items of the other components.

Another way to run components (loop-driven) assumes that components or exchange items

should never trigger their own Update() call, nor the Update() and GetValues() of other

components and their output items. Propagating the system by means of the Update() call

should happen somewhere outside, in the control program containing these components.

The loop driven approach requires more careful implementation, but it also opens a new

ways to run components. For example, it allows control program to run components in the

different threads, processes of even machines. In order to specify if a component supports

loop-driven way of work a new property was introduced on ILinkableComponent:

bool ILinkableComponent.CascadingUpdateCallsDisabled { get; set; }. The default value is

false, which means that component is allowed to trigger other components. If this property

is set to true, the component must never trigger other components. Usually this means that

when a componentrequires certain input for its input exchange items that is not available on

the related output exchange item of a connected component, the component should change

its status to WaitingForData and check if the data is available during the next Update() call.

2.7 Improvements of the component’s persistent state management.

OpenMI 2.0 facilitates a way to handle persistent states of linkable components. In the

previous version it was only possible to trigger a component to remember its state, resulting

in a string identifying the remembered state. The new version allows external programs to

remember component states. In this case component must implement IByteStateConverter

interface in addition to IManageState, see Figure 6.

G. Donchyts et el. / OpenMI 2.0 – What’s New?

Figure 6 Persistent state management interfaces

2.8 Simplification of the time-related interfaces

After review of the time-related interfaces in OpenMI 1.4 a few interfaces were removed

from the standard. It showed that a single interface ITime can provide sufficient

functionality for specifying a time stamp or a time span. ITime represents a time interval by

defining the start of that interval as a time stamp and by specifying a duration. Duration

equal to 0 simply means a time stamp. This approach simplifies the use of this interface in

the Times property of the ITimeSet, a new interface in the OpenMI 2.0. ITimeSet in this

case works similar as IElementSet: the elementset defines the spatial properties of an

exchange item, the time set defines the time frame properties.

Figure 7 Time interfaces class diagram

2.9 Making OpenMI more OGC-friendly

OpenMI uses a single interface IElementSet in order to define geometry of the exchang e

items. This interface was improved in order to simplify interoperability with OGC Simple

Geometry Specifications standards. Since there are no standard C# and java versions of the

OGC standards available yet, except GeoAPI.NET open-source project effort, it was

decided to keep IElementSet as it was, and only extend it with a few properties:

SpatialReferenceSystemWkt, HasM, HasZ.

Figure 8 IElementSet interface

This allows OpenMI to be generic enough but also to implement OGC-based element sets

in the SDK, e.g. FeatureElementSet, RasterElementSet providing more GIS-specific

functionality.

2.10 Language and platform specific features

After careful consideration OpenMI was extended with platform-specific features available

in C#/.NET and in java. These features include:

 Events

G. Donchyts et el. / OpenMI 2.0 – What’s New?

 Properties (in java still represented by get/set methods)

 Collections

It was decided that the benefits that developers will gain during use of these features will

make the standard more acceptable in the .NET and the java communities. And finding a

proper alternative to those features is always possible when OpenMI has to be used in any

other nowadays language. This allows the use of linkable components in a way as shown in

code listing on Figure 9.

Figure 9 Use of events in OpenMI 2.0

CONCLUSIONS

The list of the major changes to the OpenMI standard has been presented. OpenMI 2.0 is

certainly a major step forward in the field of environmental modeling and we hope that the

new features discussed here will simplify its application and result in better interoperability

between different components. It will take a while before the new standard will fully

replace the previous version. However, taking into account the new possibilities which

OpenMI 2.0 opens to the developers, we hope that this paper stimulates the migration of

existing components to the new standard and the development of new OpenMI components.

ACKNOWLEDGEMENT

The development of OpenMI version 2.0 has been funded by the members of the OpenMI

Association as well as the European Commission through various 6
th

 Framework Programs

and the LIFE Environment program.

REFERENCES

Gamma Erich et al., Design Patterns: Elements of Reusable Object-Oriented Software

Addison-Wesley Professional (ISBN 0-201-63361-2), 1995

Gijsbers P., From OpenMI 1.4 to 2.0. iEMSS 2010, in review. 2010

Goodall, J. L.; Robinson, B. F.; Shatnawi, F. M. and Castronova, A. M. Linking hydrologic

models and data: The OpenMI approach, American Geophysical Union, Fall Meeting

2007, abstract #H13H-1682, 2007

Knapen, M.J.R.; Athanasiadis, I.N.; Jonsson, B.; Huber, D.; Wien, J.J.F.; Rizzoli, A.E.;

Janssen, S. (2009) Use of OpenMI in SEAMLESS AgSAP proceedings, 2009

http://en.wikipedia.org/wiki/Special:BookSources/0201633612

