
Model Coupling and Integration via XML in the M3 Simulation

A. Hoheisel  

�

Fraunhofer Institute for Computer Architecture and Software Technology
Kekuléstraße 7, D-12489 Berlin-Adlershof, Germany

andreas.hoheisel@ rst.fraunhofer.de

Abstract: Complex real-world systems are currently developing into a decisive instrument for IT-supported
problem solving for a great number of problems posed by science, economy and society. Like in many envi-
ronmental simulation systems the Man Model Measurement (M3) Simulation (http://mmm.first.fraunhofer.de)
contains numerous single scientifically founded models coupled to each other to reflect the complexity of our
world. The unpredictable human factor is considered by actively involving real people into the simulation
by a Virtual Reality framework. The evolution and enhancement of the M3 system will be provided by an
open software API. This paper will focus on the control and the data communication between the distributed
simulation models that are realized by specialized markup languages which employ the XML technology for
easy extension and validation. The input and output data of the models is represented by an XML data model
that includes also the physical and mathematical meaning of the transferred data so that different models can be
easily coupled by connecting their XML formatted input and output streams, e.g. via sockets. The initialization
parameters and the relevant output data of the models can be stored in an SQL database (MySQL) which can
be accessed by a web interface or directly using JDBC. Legacy Code is included in the simulation system using
wrapping technologies.

Keywords: Model Coupling; Model Integration; XML; Actor-based Simulation; Virtual Reality

611



tion systems with the multimedia possibilities of
virtual reality. Hereby, the idea of embedding sci-
entifically founded simulation models into a Virtual
Reality Environment (VR) that involves real human
actors in the simulation is essential. Thus we get a
scientific instrument for the assessment of complex
systems involving human behavior that can be help-
ful for the development of sustainability strategies
and serve as a decision support for politicians. In
addition, this system has also a didactic function be-
cause the people acting in the M3 simulation, the so-
called actors, are confronted with the consequences
of their actions in quick-motion. Further considera-
tions about the principle ideas of the M3 simulation
can be found in the paper of Rosé [2002] in this vol-
ume.

The general structure of the M3 system is unified by
a Multi User Virtual Environment (MUVE) repre-
senting the logical structure of the simulated world
and coordinating the communication between the
three main components of the framework (Jugel
[2001]): the Multi-Purpose Graphical User Inter-
face for visualization of the simulated world in spe-
cialized views adapted for the different user groups
(actors, experts, decision makers, publicity), the
Model Server providing a distributed network of
scientific simulation models connected via generic
control and data mapping interfaces (RMI, XML),
and the Measurement Database providing current
measuring data, reference configurations and pa-
rameters of the real environment in question. The
most important user group for the success of the
M3 simulation is the group of actors who are rep-
resented by so-called avatars (Figure 1). Figure 2
shows a snapshot of the M3 expert client that is used
for controlling the simulation.

A major task of the M3 simulation is the integration
of several scientific models developed by external
institutes or by ourselves. Each model simulates the
processes of a certain part of the environment and
is maintained by the specialists who were also re-
sponsible for the development of the model. For
this purpose we build a component framework con-
sisting of interface definitions and protocols for the
communication between the components of the M3
system.

2 Models used in the M3 Simulation

Virtual worlds have no relation to reality without
the implementation of scientifically validated mod-
els. Because of the complexity of the system it is
not practicable to simulate all classes of environ-

Figure 2. M3 expert client with control panels for
each simulation component

mental processes with one monolithic program. In
the M3 system a model server is used to provide a
distributed network of scientific simulation models
connected via generic control and data mapping in-
terfaces.

Currently we include the following models in the
M3 simulation framework:

� SWIM (Soil and Water Integrated Model) —
integrates hydrology, vegetation (e.g. crop
growth), erosion, and nutrient dynamics at
the watershed scale. SWIM was developed
by the Potsdam Institute for Climate Impact
Research (Krysanova et al. [1998]) (program-
ming language: Fortran77, Fortran90)

� 4C — a model to simulate the growth of trees
in the forest including hydrology, developed
by the Potsdam Institute for Climate Impact
Research (Bugmann et al. [1997]) (Fortran90)

� Wgen — a weather generator developed by
Richardson and Wright [1984]. On the basis
of statistical data, it produces daily weather
by a random process (C)

� REWIMET — a hydrostatic, three-layer
model for the propagation of gases in the at-
mosphere including the current meteorologi-
cal situation. The model is coupled with a La-
grangian model to simulate the propagation
of
�������

particles (Unger et al. [1998], Mi-
eth et al. [1998]) (C)

� Impact — a model to simulate the impact of
the environment on the health of the people

612



due to pollution of air, ground and food de-
veloped by Beger et al. [2001] (Java)

� Mobility — a mesoscopic traffic simula-
tion model developed by Fraunhofer FIRST
(Schmidt et al. [1998]) (Java)

A general problem that is addressed here, is the in-
tegration of legacy code. Most of the models in the
environmental domain are normally used as stand-
alone programs on a specific platform. The mod-
els are generally not designed to be used in a cou-
pled simulation in conjunction with other models
that may use another programming language or even
require a special operating system. The M3 frame-
work is based on Java, and we use Java wrappers
for the simulation programs that are written in other
programming languages, in order to mask the dif-
ferences in the implementation.

3 Model Coupling

The M3 simulation is an open framework in the
sense that other models can easily be connected to
the system if they implement the protocols and in-
terfaces supported by the M3 component framework
or if there is a suitable Java wrapper that maps the
data structures and method calls used in the M3
system to the proprietary syntax of the simulation
model.

In most cases a tight coupling scheme is used in en-
vironmental simulation, and shared memory is used
for the communication between the coupled mod-
els. Tight coupling generally requires a lot of ef-
fort when integrating the models, and often it is
necessary to implement all models in the same pro-
gramming language. In the M3 simulation we use a
loose coupling scheme instead, with asynchronous
communication between the coupled models. The
model coupling is network-oriented and based on
semistructured or unstructured data exchange for-
mats (e.g. XML). This kind of model coupling is
very flexible and makes it easy to reuse single mod-
els in another context.

In the M3 simulation we use dynamic coupling with
late time binding during runtime, so that the cou-
pling does not have to be defined when compil-
ing. This enables us to select or exchange simu-
lation models during runtime without the necessity
of restarting the simulation or recompiling the sim-
ulation program. The models of the whole simu-
lation are distributed over several concurrent pro-
cesses that use online communication for bidirec-
tional or unidirectional coupling.

Figure 3. Part of the M3 system including two ex-
emplary models (SWIM and Wgen) that communi-
cate with each other via XML. A MySQL database
is used for storing and accessing the data. The
synchronization of the models is given by a virtual
clock that provides the M3 time. The MUVE is
used for the logical representation of all simulated
objects

Figure 3 shows parts of the M3 system as it is im-
plemented at the moment with two exemplary mod-
els. The simulation programs communicate with
the corresponding Java wrappers via standardized
interfaces. The protocol that is used to commu-
nicate with the models is described in section 3.1.
The protocol makes use of a special XML syntax
(http://www.w3.org/XML). Some examples of this
Markup Language will be given in section 3.2. An
XML filter is invoked for parsing the output data
and writing it into an SQL database (MySQL) any-
where in the Internet, from where it can be retrieved
using a simple web browser. The data is represented
intuitively in the virtual world or by a GIS system
with access to the SQL database. A model coordina-
tor that is part of the MUVE is used for controlling
the simulation models (section 4).

3.1 Interfaces and Protocols

The models that are connected to the M3 simula-
tion use an XML data format for the communica-
tion with the other components of the M3 frame-
work (e.g. user interfaces, other models, databases).
The structure of the input/output XML data of each
model is clearly defined by a Document Type Defi-
nition (DTD) or an XML Schema that serves as an
interface definition of the model. The XML data of
a simulation model may also include method calls.
With this standardized and self-describing model in-
terface, it is easy to encapsulate a model (e.g. For-

613



tran/C code) using a generic Java wrapper that al-
lows remote access to the functionality (via RMI)
and the data (via sockets) of the simulation program,
including interactive control and management. The
Java wrapper uses standard input (stdin) and stan-
dard output (stdout) of the simulation program as
interfaces for the communication with legacy code
that is not written in Java. A substantial advantage
of this type of interface is that almost every pro-
gramming language implements the possibility to
write to stdout and to read from stdin. Single model
components that use stdout/stdin for their control-
ling and data transfer can very easily be tested and
validated by means of scripts or by simply invoking
method calls at the command line.

The M3 system itself uses the remote method invo-
cation (RMI) for the communication with the model
wrapper that implements a Java remote interface.

3.2 XML Data Model

Using an XML data model for coupling models has
several advantages:

� Extensibility: the semantics of the XML data
model can be customized individually for
each application

� Structure: the structure of the XML data is
defined in an external Document Type Defi-
nition (DTD) or XML Schema. This enables
XML parsers to validate and check the well-
formedness of the XML data

� Text format: XML supports all popular en-
codings (ASCII, ISO8859-1, unicode, etc.)
and is independent of the platform, the pro-
gramming language, and the protocol that is
used to transfer the XML data

� Documentation: the XML data format con-
tains meta data that offers a comprehensive
documentation of the inputs and outputs of
the component. This meta data contains —
besides format specifications (double, float,
integer, string etc.) — the (e.g. physical)
meaning of the data that makes the data easily
understandable to humans or computer pro-
grams

� Widely-used: XML is very popular and there
are many tools for editing, parsing and evalu-
ating XML data.

The major disadvantages using XML are the large
data volume that is caused by the additional meta

data and by using a text-based format for encoding
binary data, and the time overhead that is needed
for parsing the XML data. The large data volume
can simply be reduced by online compressing tech-
niques or by transferring binary data separated from
the format description over an own communication
channel.

When two model components speak the same XML
syntax, the simplest way to couple them is just to
pipe the stdout of the one model into the stdin of the
other.

An example of the XML input and the correspond-
ing output of the simulation program SWIM (see
section 2) is shown below. If the physical units are
not specified, we use SI units as default, i.e. the pre-
cipitation in the example below is measured in �

instead of ��� .

SWIM input:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE model SYSTEM "swim1_5.dtd">
<model name="swim">

<methodCall name="step" />
<methodCall name="getProperty"

propertyName="precipitation" />
<methodCall name="setProperty"

propertyName="interactiveManagement"
type="boolean"
igis="1519">true</methodCall>

<methodCall name="thisIsNotAValidMethod" />
</model>

Corresponding SWIM output:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE model SYSTEM "swim1_5.dtd">
<!-- data output from swim -->
<!-- working directory: modelle/br2/ -->
<model name="swim">
<version>1.5_m3</version>
<methodResponse nr="1" name="step">
<dataIO>
<timeInstant>
<dateTime.yearDayMs>
<year>2000</year>
<dayOfYear>1</dayOfYear>

</dateTime.yearDayMs>
</timeInstant>

</dataIO>
</methodResponse>
<methodResponse nr="2" name="getProperty">
<dataIO>
<timeInstant>
<dateTime.yearDayMs>
<year>2000</year>
<dayOfYear>1</dayOfYear>

</dateTime.yearDayMs>
<data.raster rasterName="subbasins"

rasterIndex="isub">
<precipitation isub="1">0.70E-02</precipitation>
<precipitation isub="2">0.10E-01</precipitation>
<precipitation isub="3">0.96E-02</precipitation>
<precipitation isub="4">0.10E-01</precipitation>
<precipitation isub="5">0.11E-01</precipitation>
<precipitation isub="6">0.93E-02</precipitation>
<precipitation isub="7">0.92E-02</precipitation>
<precipitation isub="8">0.74E-02</precipitation>
<precipitation isub="9">0.74E-02</precipitation>

614



<precipitation isub="10">0.10E-01</precipitation>
<precipitation isub="11">0.10E-01</precipitation>
<precipitation isub="12">0.93E-02</precipitation>
<precipitation isub="13">0.10E-01</precipitation>
<precipitation isub="14">0.89E-02</precipitation>
<precipitation isub="15">0.11E-01</precipitation>
<precipitation isub="16">0.11E-01</precipitation>
<precipitation isub="17">0.11E-01</precipitation>
<precipitation isub="18">0.11E-01</precipitation>
<precipitation isub="19">0.78E-02</precipitation>
<precipitation isub="20">0.78E-02</precipitation>
</data.raster>

</timeInstant>
</dataIO>

</methodResponse>
<methodResponse nr="3" name="setProperty">
</methodResponse>
<methodResponse nr="4" name="thisIsNotAValidMethod">
<fault>
<faultCode>10</faultCode>
<faultString>

error: lookup for unknown function
</faultString>
<faultActor>

m3.model.swim.xmlparse_expat.c
</faultActor>
<detail>thisIsNotAValidMethod</detail>

</fault>
</methodResponse>

</model>

3.3 XML in Fortran

In environmental simulation the majority of the pro-
grams is still written in Fortran77 or Fortran90.
Due to the lack of XML parsers for the Fortran
programming language we use the C library Expat
(http://sourceforge.net/projects/expat/) which pro-
vides a Simple API for XML (SAX) for the eval-
uation of the incoming XML stream. Expat can be
linked to the Fortran program in order to access the
data and functionality of the simulation program via
XML.

4 Model Control

The major challenge when coupling several simula-
tion models is to grasp and to define the conditions
and dependencies between the models. An accurate
description of these relations is needed to be able to
control a simulation system that incorporates cou-
pled models.

A very suitable tool for the description and model-
ing of discrete systems are Petri Nets. Petri Nets
consist of places

�
, transitions � , arcs pointing

from places to transitions
���
� (place is called

input place), arcs pointing from transitions to places
�
���

(place is called output place) and mark-
ings � . There are two simple rules that describe the
movement of markings in a Petri Net: A transition
is called active, when all its input places and none
of its output places has markings. An active transi-
tion may switch by removing all markings from the

Figure 4. A Place Transition Petri Net for mod-
eling and controlling the data flow between model
components. Model A is active. When model A
switches it retrieves the input data from the input
places and fills the output places with output data.
After that, model B will be active.

input places and by putting one marking on every
output place. For a mathematical definition of Petri
Nets refer to e.g. Reisig [1991].

In our case, we use the transitions as a model for
software components (e.g. simulation programs),
the places represent files or data buffers and the
markings symbolize the data that has to be trans-
ferred between the software components (Figure 4).
Once the Petri Net for a coupled simulation is de-
fined, the model coordinator just has to activate ev-
ery simulation component that has all inputs places
filled with markings (data) and that has all output
places free to handle the output data. The Petri Net
itself may be defined in terms of a scripting lan-
guage or by a graphical user interface (Jüngel et al.
[2000]). With a small set of predefined transitions, it
is possible to implement loops or other conditional
dependencies between the components.

5 Conclusions

The M3 simulation distinguishes itself from con-
ventional simulation systems by the involvement of
real human actors into the simulation. But like in
other complex simulation systems, we have to deal
with the challenge of coupling and integrating many
different simulation models. We decided to face
this challenge by using a loose coupling scheme that
uses asynchronous communication on a simulation
network where the individual simulation programs
are distributed over concurrent processes. In order
to simplify the coupling mechanisms between the
models we implemented a generic, self-describing
XML data format for transferring data and for in-
voking method calls on remote simulation models.
Petri Nets are used as a powerful tool for defining
the dependencies between simulation components
and for the control of the data flow in a system of

615



coupled models.

For further information about the M3 project an
the current state please contact our project web site
http://mmm.first.fraunhofer.de

Acknowledgements

I would like to thank my colleagues from Fraun-
hofer FIRST that contributed to the M3 project, es-
pecially Prof. A. Sydow, S. Unger, H. Rosé, T.
Aßelmeyer-Maluga, P. Frank, B. Walter, B. Kwella,
M. Schmidt, M. L. Jugel and all the students in-
volved in the project. From the Potsdam Institute
for Climate Impact Research I would like to thank
the Hydrology and Water Resources working group
for providing the model SWIM, the Forests and
Forestry working group for the 4C model and the
Data & Computation department for the fruitful dis-
cussions, particularly C. Ionescu for the idea with
the petri nets and the theory of the typed data trans-
fer. Last but not least I would like to thank my wife
Tanja for proofreading this article.

References

E. Beger, D. Bieninda, and S. Gester. Konzep-
tion des Moduls Impaktmodelle im M3-System
des Projekts GLOBALSIM. Technical report,
IBB Ingenieurbüro Beger für Umweltanalyse und
Forschung, Rossendorf, 2001.

H. Bugmann, R. Grote, P. Lasch, M. Lindner, and
F. Suckow. A new forest gap model to study
the effects of environmental change on forest
structure and functioning. In G.M.J Mohren
and K. Kramer, editors, Global Change Impacts
on Tree Physiology and Forest Ecosystems, vol-
ume 52 of Forestry Sciences, pages 255–261.
Kluwer Academic Publishers, 1997.

M. L. Jugel. Enhancing MUVEs: Connecting vir-
tual objects with environmental simulation. In
Proceedings of the International Conference on
Virtual Worlds and Simulation, Phoenix, Arizona,
January 2001.

M. Jüngel, E. Kindler, and M. Weber. The petri net
markup language. Workshop AWPN, Koblenz,
Germany, 2000.

V. Krysanova, D.-I. Müller-Wohlfeil, and
A. Becker. Development and test of a spa-
tially distributed hydrological/water quality
model for mesoscale watersheds. Ecological
Modelling, 106:261–289, 1998.

P. Mieth, S. Unger, and M.L. Jugel. An environment
simulation and monitoring system for urban ar-
eas. TRANSACTIONS of SCS, 15:115–121, 1998.

W. Reisig. Petrinetze — Eine Einführung. Springer-
Verlag, 1991.

C.W. Richardson and D.A. Wright. WGEN: A
model for generating daily weather variables.
Agricultural Research Service, U. S. Department
of Agriculture, 1984.

H. Rosé. M3-Project — Actor based simulation in
virtual worlds. In Proceedings of the Biennial
meeting of the International Environmental Mod-
elling and Software Society, Lugano, Switzer-
land, June 2002.

M. Schmidt, R.-P. Schäfer, and K. Nökel. SIM-
TRAP: Simulation of traffic-induced air pollu-
tion. TRANSACTIONS of SCS, 15:122–132,
1998.

S. Unger, I. Gerharz, P. Mieth, and S. Wottrich.
HITERM — high-performance computing for
technological risk management. TRANSAC-
TIONS of SCS, 15:109–114, 1998.

616


