
International Environmental Modelling and Software Society (iEMSs) 
 2012 International Congress on Environmental Modelling and Software 

Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany 
R. Seppelt, A.A. Voinov, S. Lange,  D. Bankamp  (Eds.) 

http://www.iemss.org/society/index.php/iemss-2012-proceedings 

 1 

 2 

Integration of Bayesian inference 3 

techniques with mathematical modelling  4 

 5 

 6 

George B. Arhonditsis 7 

Ecological Modelling Laboratory, Department of Physical & Environmental 8 

Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada 9 

 e-mail: georgea@utsc.utoronto.ca 10 

 11 

  12 

Abstract: Skeptical views of the scientific value of modelling argue that there is no 13 

true model of an ecological system, but rather several adequate descriptions of 14 

different conceptual basis and structure. My study addresses this question using a 15 

complex ecosystem model, developed to guide the water quality criteria setting 16 

process in the Hamilton Harbour (Ontario, Canada), along with a simpler plankton 17 

model that considers the interplay among phosphate, detritus, and generic 18 

phytoplankton and zooplankton state variables. Predictions from the two models 19 

are combined using the respective standard error estimates as weights in a 20 

weighted model average. The two eutrophication models are used in conjunction 21 

with the SPAtially Referenced Regressions On Watershed attributes (SPARROW) 22 

watershed model. The Bayesian nature of my work is used: (i) to alleviate problems 23 

of spatiotemporal resolution mismatch between watershed and receiving waterbody 24 

models; and (ii) to overcome the conceptual or scale misalignment between 25 

processes of interest and supporting information. The lessons learned from this 26 

study will contribute towards the development of integrated modelling frameworks. 27 

 28 

Keywords: Process-based modelling, Eutrophication, Bayesian inference, Water 29 

quality criteria, Decision making.   30 
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 32 

1. Introduction 33 

 34 

In the context of water quality assessment, the application of process-based 35 

models typically has a deterministic character, whereby single-value predictions at 36 

each point in time and space are derived from uniquely determined model inputs. 37 

Most of the existing calibration efforts aim at reproducing the average ecological 38 

dynamics, but fail to capture the entire range of natural conditions experienced. The 39 

credibility of these practices and their adequacy in addressing environmental 40 

management problems has recently been questioned for two main reasons 41 

[Arhonditsis et al. 2007]. First, regardless of its complexity and supporting 42 

information, the application of any modeling construct involves substantial 43 

uncertainty contributed by model structure, parameters, and other associated inputs 44 

(e.g., boundary or initial conditions). Second, models parameterized to depict the 45 

average ecosystem behavior are inadequate in addressing the type of percentile-46 

based standards needed to accommodate the natural spatiotemporal variability and 47 

may bias (underestimate) the predictions of the frequency of standard violations 48 

under various management options [Borsuk et al. 2002].  49 

For better model-based decision analysis that can effectively support the 50 

development of environmental standards and the policy making process, the 51 

uncertainty in model predictions as well as the full range of the expected system 52 

responses must be rigorously quantified and reported in a straightforward way. 53 

Model uncertainty analysis essentially aims to make inference about the joint 54 

probability distribution of model inputs, reflecting the amount of knowledge available 55 

for model parameters, initial conditions, forcing functions, and model structure. In 56 

this regard, Bayes’ Theorem provides a convenient means to combine existing 57 

information (prior) with current observations (likelihood) for projecting future 58 

ecosystem response (posterior). Hence, the Bayesian techniques are more 59 
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informative than the conventional model calibration practices, and can be used to 60 

refine our knowledge of model input parameters while obtaining predictions along 61 

with uncertainty bounds for output variables [Arhonditsis et al. 2007]. 62 

Despite the compelling arguments for considering Bayesian inference techniques 63 

as an integral part of the model development process, their high computational 64 

demands along with the lack of analytical expressions for the posterior distributions 65 

was until recently a major impediment for their broader application. Nonetheless, 66 

the advent of fast computing has allowed the development of several methods for 67 

performing Bayesian inference and the most commonly used technique is called 68 

Markov chain Monte Carlo (MCMC); a general methodology that provides a solution 69 

to the difficult problem of sampling from high dimensional distributions for the 70 

purpose of numerical integration. In this paper, I will discuss several promising 71 

prospects of the application of Bayesian inference techniques, such as the 72 

averaging of predictions from different models and the integration of watershed with 73 

receiving waterbody models, which can be used from stakeholders and policy 74 

makers to guide the use of millions of dollars of restoration and to dictate the Best 75 

Management Practices.  76 

 77 

 78 

2. Case study  79 

 80 

Hamilton Harbour, a large embayment located at the western end of Lake Ontario, 81 

has a long history of eutrophication problems primarily manifested as excessive 82 

algal blooms, low water transparency, predominance of toxic cyanobacteria, and 83 

low hypolimnetic oxygen concentrations during the late summer [Gudimov et al. 84 

2011]. Since the mid 80s, when the Harbour was identified as one of the 43 Areas 85 

of Concern (AOC) in the Great Lakes area, the Hamilton Harbour Remedial Action 86 

Plan (RAP) was formulated through a variety of government, private sector, and 87 

community participants to provide the framework for actions aimed at restoring the 88 

Harbour environment. The foundation of the remedial measures and the setting of 89 

water quality goals reflect an ecosystem-type approach that considers the complex 90 

interplay between abiotic variables and biotic components pertinent to its beneficial 91 

uses. The drastic nutrient loading reduction has historically played a central role in 92 

the restoration efforts, although the determination of the critical levels has been a 93 

thorny issue as the population growth and increasing urbanization accentuate the 94 

pressure for expansion of the local wastewater treatment plants (WWTPs). 95 

Recent modelling work suggests that the water quality goals for TP levels <20 µg L
-

96 
1
, chlorophyll a concentrations between 5-10 µg L

-1
, and water clarity >3 m will likely 97 

be met, if the proposed phosphorus loading reductions at the level of 142 kg day
-1
 98 

are actually achieved [Ramin et al. 2011]. Yet, it was emphasized that the predictive 99 

capacity of any modelling exercise in the Harbour is conditional upon the credibility 100 

of the contemporary nutrient loading estimates, which are uncertain and appear to 101 

inadequately account for the contribution of non-point sources, episodic 102 

meteorological events (e.g., spring thaw, intense summer storms), and short-term 103 

variability at the local WWTPs. The same modelling work also pinpointed two 104 

important unknown factors that can potentially modulate the response of the system 105 

to the exogenous nutrient loading reduction and may shape the duration of the 106 

transient phase as well as the system resilience in the “post-recovery” era. First, the 107 

dynamics of phosphorus in the sediment-water column interface are still poorly 108 

understood, and thus the historical notion that the internal loading in the Harbour is 109 

minimal may be inaccurate [Gudimov et al. 2011]. Second, we lack fundamental 110 

knowledge of the regulatory factors of herbivorous zooplankton abundance and 111 

composition, even though existing evidence suggests that a thriving zooplankton 112 

community can be instrumental for achieving faster recovery rates in the Harbour. 113 

The latter prospect highlights a central conclusion drawn from my recent work that 114 

the bottom-up (i.e., nutrient loading reduction) approach historically followed in the 115 

area was sufficient to bring the system in its present state, but any further 116 

improvements should be sought in the context of a combined bottom-up and top-117 

down control [Ramin et al. 2011].  118 

 119 

 120 
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3. Integrated modelling framework  121 

 122 

We developed an integrated modelling framework that is founded upon i) a 123 

SPARROW model configuration that accommodates the interannual loading 124 

variability in the Hamilton Harbour watershed; ii) a Bayesian downscaling algorithm 125 

that transforms the annual nutrient loading predictions to daily estimates; and iii) 126 

two eutrophication models that will be used to address the following important 127 

questions regarding the future response of the system: How possible is it to meet 128 

the objective of delisting the study system as an Area of Concern, if the nutrient 129 

loading reductions proposed by the Hamilton Harbour Remedial Action Plan are 130 

actually implemented? What additional remedial actions are needed to increase the 131 

likelihood of meeting the water quality targets? 132 

 133 

3.1 Watershed modelling 134 

 135 

The SPARROW model has been extensively described elsewhere [Wellen et al., 136 

2012], so only a basic introduction is given here. SPARROW is a hybrid 137 

empirical/process-based model designed to be applied to a network of water quality 138 

monitoring stations. SPARROW consists of a two-level hierarchical spatial 139 

structure. Watersheds are first divided into subwatersheds, each of which drains to 140 

a water quality monitoring station. Each subwatershed is then disaggregated into 141 

reach catchments draining to a particular stream segment. Mean annual watershed 142 

export of any constituent is expressed as a function of watershed attributes. The 143 

model considers source and sink processes over annual timescales. Source 144 

processes, described with export coefficients, predict constituent mobilization; 145 

delivery factors predict how landscape attributes modulate the delivery of the 146 

mobilized constituent to streams; and attenuation coefficients predict the amount of 147 

the delivered constituent remaining in transit per length of stream or per reservoir. 148 

In this study, Wellen et al. (2012) presented a statistical approach that introduces 149 

temporal variability to the SPARROW model by applying a repeated measures 150 

approach to a network of water quality monitoring stations. Rather than selecting a 151 

single year to phase out the variability in time and subsequently focusing on the 152 

spatial variability, we calibrate the model to annual loads measured repeatedly at a 153 

subset of intensively monitored sites in the studied watershed. With this statistical 154 

configuration, the SPARROW model is used to estimate a static baseline level of 155 

nutrient loading (µi) over the study period and forcing factors are being employed to 156 

explain the temporal variability around that baseline: 157 

Yi,t = µi + Wv,tγv + εi,t        εi,t~N(0,σ
2
)                                        (1) 158 

where Yi,t refers to the natural logarithm of the measured annual load at 159 

subwatershed monitoring station i during year t, µi refers to a prediction of the 160 

natural logarithm of a baseline annual load at monitoring station i estimated by the 161 

SPARROW equation, Wv,t denotes a matrix of v, 1:V, temporal forcing factors 162 

across years t, 1:T, γv denotes the corresponding vector of coefficients, and εi,t 163 

represents an independent spatiotemporal error. All errors are assumed 164 

independent, normally distributed, and with zero mean. The temporal variability 165 

could conceivably be accommodated by anything other than watershed landscape 166 

attributes, and the focus here is on climatic factors, namely total annual 167 

precipitation and potential evapotranspiration. 168 

The parameterization of the SPARROW model was based on measured loading 169 

data from the period 1988-2007 (Fig. 1; top panel). The calibration exercise offered 170 

estimates of the export coefficients and the delivery rates from the different 171 

subcatchments and thus generated testable hypotheses regarding the nutrient 172 

export "hot spots" in the watershed. We found that sites which are both large and 173 

close to the harbour have the highest delivery values per area, as the attenuation of 174 

their loads en route to the system is very low and the urban developments in the 175 

Harbour’s basin are more concentrated along the Harbour’s shore (Fig. 1; bottom 176 

panel). Further, the estimates of total phosphorus export suggested that urban land 177 

uses may export more phosphorus per area than agricultural lands. This finding is 178 

somewhat contrary to the popular notion that the rates of nutrient export from urban 179 

lands are lower than those of agricultural lands due to lower nutrient subsidies. This 180 

result may be due to the very short residence time of water in urban streams and 181 
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the limited contact runoff has with the soil matrix, which tends to trap particulate 182 

phosphorus and chemically occlude soluble phosphorus [Wellen et al., 2012]. Soil 183 

compaction due to recent construction may cause significant declines in soil 184 

infiltration capacity and a consequent increase in the generation of runoff. The 185 

higher nutrient delivery to streams in urban areas could possibly explain higher 186 

nutrient export rates despite lower nutrient subsidies.  187 

 188 

 189 

 190 
Figure 1: (Top panel) Posterior median residuals of the SPARROW model 191 

predictions in two major tributaries of the Hamilton Harbour watershed. (Bottom 192 

panel) Estimated contribution of each subwatershed to the total phosphorus loading 193 

in Hamilton Harbour. The map on the left expresses the load of each subwatershed 194 

as a percentage of the total phosphorus load, including the combined sewer 195 

overflows and taking into account attenuation en route to Hamilton Harbour. The 196 

map on the right normalizes the percentage contribution by the corresponding 197 

subwatershed areas. 198 

 199 

 200 

3.2 Eutrophication modelling 201 

 202 

A complex eutrophication model was developed that considers the interplay among 203 

the following state variables in the epilimnion and hypolimnion of the Hamilton 204 

Harbour: nitrate (NO3), ammonium (NH4), phosphate (PO4), generic phytoplankton, 205 

cyanobacteria-like phytoplankton, zooplankton, organic nitrogen (ON) and organic 206 

phosphorus (OP). The model was forced with the SPARROW outputs. To address 207 

the mismatch between the annual predictions of the watershed model and the daily 208 

resolution of the model for the receiving waterbody, we developed a Bayesian 209 

hierarchical downscaling algorithm. This approach connects the daily precipitation 210 

in the watershed with the downstream flows using logistic regression modeling and 211 

Bernoulli distribution to reproduce low and high flow regimes. A Bayesian calibration 212 

framework was then implemented, founded upon a statistical formulation that 213 
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explicitly accommodates measurement error, parameter uncertainty, and model 214 

structure imperfection [Ramin et al., 2011].  215 

The model achieved a good representation of several key water quality variables 216 

(chlorophyll a, total zooplankton biomass, phosphate, and total phosphorus) and 217 

sufficiently reproduced the major cause-effect relationships underlying the Harbour 218 

dynamics. In particular, the model predicts a weakly positive Chla-TP relationship 219 

under the present loading conditions, while the corresponding chlorophyll a 220 

predictive distributions for different TP levels consistently exceed the targeted level 221 

of 10 µg L
-1
 (Fig. 2a). When the model is forced with the Hamilton Harbour RAP 222 

nutrient loading propositions, the epilimnetic TP concentrations dramatically 223 

decrease (< 24 µg L
-1
), while TP levels lower than 20 µg L

-1
 significantly decrease 224 

the exceedance frequency of the 10 µg L
-1
 chl a goal (Fig. 2b). Further, the 225 

relatively discontinuous drop of the chlorophyll a predictive distributions around the 226 

level of 20 µg TP L
-1
 implies a severe accentuation of the phosphorus limitation of 227 

the algal growth in the system, given the posterior phytoplankton parameterization 228 

obtained. The third panel of the same figure illustrates the predictive distributions of 229 

chlorophyll a and epilimnetic TP concentrations. Generally, the modeling analysis 230 

provides evidence that the two criteria are achievable, but the water quality setting 231 

process should accommodate the natural variability by allowing for a realistic 232 

percentage of violations, e.g., exceedances of less than 10% of the weekly samples 233 

during the stratified period should still be considered as system compliance.  234 

 235 

 236 
Figure 2: Chlorophyll a predictive distributions for different levels of TP 237 

concentrations under (a) the present and (b) the Hamilton Harbour RAP loading 238 

targets. The third panel (c) illustrates the predictive distributions of chlorophyll a and 239 

epilimnetic TP concentrations derived from the complex eutrophication model. 240 

 241 
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3.3 Bayesian Model Averaging 242 

 243 

Recognizing that there is no true model of an ecological system, but rather several 244 

adequate descriptions of different conceptual basis and structure, Bayesian Model 245 

Averaging (BMA) is a technique designed to explicitly account for the uncertainty 246 

inherent in the model selection process [Raftery et al., 2005]. By averaging over 247 

many different competing models, BMA incorporates the uncertainty about the 248 

optimal model for any given exercise into the inference drawn about parameters 249 

and prediction. Therefore, rather than picking the single “best-fit” model to predict 250 

future system responses, we can use Bayesian model averaging to provide a 251 

weighted average of the forecasts from different models. In this regard, the 252 

projections of the complex eutrophication model were tested against those from a 253 

simple model that considers the interplay among the limiting nutrient (phosphate), 254 

phytoplankton, zooplankton, and detritus (particulate phosphorus); also known as 255 

NPZD model in the literature (Ramin et al., 2012).  256 

The two models represent both ends of the complexity spectrum, characterized by 257 

different strengths and weaknesses. One model is a simple mathematical 258 

description of the system that accounts for the interplay between the limiting 259 

nutrient and aggregated biotic compartments such as “phytoplankton”, and 260 

“zooplankton”. This simple approach is more easily subjected to detailed uncertainty 261 

analysis and also has the advantage of fewer unconstrained parameters. The 262 

second model simulates two elemental cycles, functional phytoplankton groups, 263 

and dynamic nutrient release from the sediments. The sophisticated 264 

parameterization of the complex model provides confidence for more realistic 265 

reproduction of natural system dynamics, but the main criticism for this strategy is 266 

the inevitably poor identifiability with respect to the available data as well as the 267 

limited flexibility (high computational demands) to thoroughly examine model 268 

uncertainty to the input requirements. 269 

 270 

 271 
Figure 3: Predictions of the epilimnetic summer chlorophyll a concentrations, under 272 

the proposed nutrient loading reductions by the Hamilton Harbour RAP, based on 273 

the two eutrophication models (A-B) and their averaged predictions (C). 274 
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The predictions from the two models were combined using the respective mean 275 

model standard error estimates as weights in a weighted model average:  276 
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where l represents the number of models considered in this analysis (l = 2); m 280 

corresponds to the number of state variables j of the model Mi for which data are 281 

available (m =  6 or 11); MC is the total number of MCMC runs sampled to form the 282 

model posteriors; σijk denotes the model structural error for the state variable j of the 283 

model Mi as sampled from the MCMC run k; jY
 
represents the annual observed 284 

average for the variable j, MiTP  and Michla  are the total phosphorus and 285 

chlorophyll a predictions from the individual models weighted by the corresponding 286 

weights Miw to obtain the averaged predictions TP and chla .  287 

In particular, both models also predict that the epilimnetic chlorophyll a 288 

concentrations will fall below the threshold level of 10 µg chla L
-1
 (Fig. 3). Yet, the 289 

simple model appears to support more optimistic predictions with respect to 290 

phytoplankton response to the reduced ambient TP concentrations relative to the 291 

complex one. Consequently, the averaged predictive distribution for chlorophyll a 292 

demonstrates a distinct bimodal pattern with a primary mode at 7.5 µg chla L
-1
, 293 

reflecting the greater weight (higher performance) of the complex model, and a 294 

secondary peak at 5.1 µg chla L
-1
,
 
associated with the simple one (Fig. 3). One of 295 

the major structural differences of the two models lies in the way they handle the 296 

nutrient fluxes from the sediments, i.e., a static phosphorus flux vis-à-vis a 297 

mechanistic characterization that relates phosphorus release to particulate 298 

sedimentation and burial rates [Ramin et al., 2011]. Being part of the model 299 

updating process, the simple model predicts that the sediments contribute 300 

approximately 1.1 mg P m
2
 day

-1
 into the overlying water column, whereas the 301 

same fluxes are raised up to 2.0 mg P m
2
 day

-1
 with the complex model. Under the 302 

reduced nutrient loading scenario, the dynamic nature of the sediment response 303 

with the complex model decreases the release of phosphorus at the level of 1.5 mg 304 

m
2
 day

-1
, which however remains well above the flux used to force the simple 305 

model. This discrepancy most likely reflects one of its structural weaknesses and 306 

also highlights the importance of embracing more sophisticated approaches to 307 

sediment diagenesis in the Harbour. Despite all the arguments historically used to 308 

downplay the relative contribution of the sediment fluxes in the system, recent 309 

evidence suggests that the hypolimnetic phosphate can easily exceed the level of 310 

30 µg PO4 L
-1
 for extended period (3-4 weeks) during the late summer/early fall (T. 311 

Labencki, unpublished data). This pattern likely suggests that the summer 312 

epilimnetic environment may also be subject to intermittent nutrient pulses from the 313 

hypolimnion, which in turn can have profound ramifications on the dynamics of the 314 

phytoplankton community.  315 

 316 

4. Discussion-Future Perspectives 317 

 318 

Modellers must acknowledge the uncertainty pertaining to the selection of the 319 

optimal model structure for a specific environmental management problem, and 320 

Bayesian averaging of two or more models is a promising means for improving the 321 

contemporary modelling practice. In the context of ecological process-based 322 

modelling though, this approach should not be viewed solely as a framework to 323 

improve our predictive devices, but rather as an opportunity to compare alternative 324 
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ecological structures, to challenge existing ecosystem conceptualizations, and to 325 

integrate across different (and often conflicting) paradigms. Future research should 326 

also focus on the refinement of the weighting schemes and other performance 327 

standards to impartially synthesize the predictions of different models. Several 328 

interesting statistical post-processing methods presented in the field of ensemble 329 

weather forecasting will greatly benefit our attempts to develop weighting schemes 330 

suitable for the synthesis of multiple ecosystem models. Some of the outstanding 331 

challenges involve the development of ground rules for the features of the 332 

calibration and validation domain [Anderson, 2005], the inclusion of penalties for 333 

model complexity that will allow building forecasts upon parsimonious models, and 334 

performance assessment that does not exclusively consider model endpoints but 335 

also examines the plausibility of the underlying ecosystem structures, i.e., biological 336 

rates, ecological processes or derived quantities [Arhonditsis and Brett, 2004]. 337 

In conclusion, Bayesian inference techniques are uniquely suitable for integrating 338 

various types of models (complex dynamic models, empirical equations, expert 339 

judgments) into one coherent framework, while rigorously assessing the uncertainty 340 

associated with model structures, parameters and other inputs. In particular, my 341 

recent research has shown that the Bayesian paradigm can effectively alleviate 342 

problems of spatiotemporal resolution mismatch among different submodels of 343 

integrated environmental modelling systems, overcome the conceptual or scale 344 

misalignment between processes of interest and supporting information, exploit 345 

disparate sources of information that differ with regards to the measurement error 346 

and resolution, and accommodate tightly intertwined environmental processes 347 

operating at different spatiotemporal scales 348 

 349 
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