
International Environmental Modelling and Software Society (iEMSs)
2012 International Congress on Environmental Modelling and Software

Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany
R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds.)

http://www.iemss.org/society/index.php/iemss-2012-proceedings

Domain Specific Languages for Modeling
and Simulation: Use Case OMS3

Olaf David

23
, Wesley Lloyd23, James C. Ascough II

1
, Timothy R. Green

1
, Kevin

Olson
3
, George H. Leavesley

3
, Jack Carlson

3

1
USDA-ARS-NPA, Agricultural Systems Research Unit

2150 Centre Ave., Bldg. D, Suite 200, Fort Collins, Colorado 80526 USA
2
 Colorado State University, Dept. of Computer Science,

Fort Collins, Colorado 80523 USA
3
 Colorado State University, Dept. of Civil and Environmental Engineering,

Fort Collins, Colorado 80523 USA

odavid@colostate.edu

Abstract: A domain-specific language (DSL) is usually a concise, declarative
language that strongly emphasizes a particular problem domain. DSL methods and
implementations in general are widely prototyped and applied for creating elegant
ways to express properties, relationships, and behavior of real-world models. This
paper introduces DSL use for creating models and simulations within the Object
Modeling System 3 (OMS3) modeling framework. In OMS3, various DSL concepts
have been adopted to complement general-purpose modeling languages such as
Java, FORTRAN, and C. Design patterns, such as the builder pattern, have been
adopted through the DSL to support the setup of complex simulations for various
applications such as Ensemble Streamflow Prediction (ESP), model calibration
(Luca), configuration of model efficiency calculation, or output visualization.
Experience has shown that a well-balanced adoption of DSL principles,
complemented with general-purpose language elements, enhances the efficiency
of model application while reducing development effort for model developers and
users. In addition, adoption of DSL principles provides a viable alternative to
complex graphical user interface development.

Keywords: Component-based modeling, Domain Specific Languages, Modeling
frameworks, Simulations; Calibration.

1. INTRODUCTION

A domain-specific language (DSL), in contrast to a general purpose programming
language, is a programming language or specification language dedicated to a
particular problem domain, a particular problem representation approach, and/or a
particular solution technique (Deursen, 1997; Deursen et al., 2000). DSLs provide
concise and strongly focused methods for data management and configuration
setup of a program. They let users write simple business rules for a particular task.
DSL designs are geared towards easy readability and DSL constructs often read
like natural languages. The declarative DSL approach is motivated by the desire to
allow coding without actually promoting it. The Object Modeling System 3 (OMS3)
takes advantage of the DSL “builder” design pattern as provided by the Groovy
programming language and DSL extension (Dearle, 2010). OMS3 defines
simulation DSLs for various purposes. Basic model application, parameter
estimation, sensitivity analysis, or ensemble streamflow prediction are a few
examples of DSL variants in OMS3. These simulation DSLs allow the creation and

O. David et al. / Domain Specific Languages for Modeling and Simulation: Use case OMS3.

configuration of run-time simulations for OMS3; however, the simulation DSL is not
inherently bound to this framework.

2. SIMULATION DSLs

What constitutes a simulation in the OMS3 context? A simulation DSL declares the
resources needed to run an environmental model for a given purpose. A basic
simulation in OMS3 consists of: 1) the component executable binaries, 2) model-
specific parameters and other (e.g., climate) input data in files or databases, 3)
strategies for handling model output, and 4) performance evaluation methods, e.g.,
simple graphing/plotting or formal evaluation statistics. Additional information and
resources may be required if the simulation includes parameter estimation,
sensitivity analysis, or uncertainty analysis. A simulation DSL reads like structured
text, such as XML or JSON. However, it is still executable code that might contain
general purpose language constructs. The following sections present three different
simulation types: (i) basic simulation, (ii) ensemble stream flow prediction, and (iii)
model calibration using Luca.

2.1 Basic Simulation

Listing 1 shows a typical simulation DSL file (*.sim) for OMS3 which is directly
executable using the OMS3 runtime. It has a hierarchical structure resembling
some XML design approaches with two significant differences: 1) it is not as
verbose as XML and is executable as a script, and 2) it may contain programming
statements in the Java/Groovy programming language. The ability to parse and
process a simulation DSL is part of the underlying Groovy runtime in OMS3. The
“*.sim” file defines the model by listing all model components, defining connectivity
of component fields, and providing initial parameter definitions. The simulation
script file in Listing 1, as used within the Thornthwaite monthly water balance model
presented in Lloyd et al. (2011a), provides underlying knowledge about component
connectivity. Model components are specified within the components{} section in
Listing 1. Component connection is represented via connect{} statements,
indicating data flow from source to target.

Listing 1
Simulation DSL example in OMS3 for a monthly water balance model.

sim(name:"TW") {
 build(targets:"all")
 // define output strategy: output base dir and
 // the strategy NUMBERED|SIMPLE|TIME
 outputstrategy(dir: "$oms_prj/output", scheme:SIMPLE)

 // define model
 model(iter:"climate.moreData") {
 components { // listing of all model components
 climate 'tw.Climate'
 daylen 'tw.Daylen'
 et 'tw.HamonET'
 out 'tw.Output'
 runoff 'tw.Runoff'
 snow 'tw.Snow'
 soil 'tw.SoilMoisture'
 }
 connect { // component connectivity: ‘source’ ‘target’
 // climate
 'climate.temp' 'soil.temp'
 'climate.temp' 'et.temp'
 'climate.temp' 'snow.temp'

O. David et al. / Domain Specific Languages for Modeling and Simulation: Use case OMS3.

 'climate.precip' 'soil.precip'
 'climate.precip' 'snow.precip'
 'climate.time' 'daylen.time'
 'climate.time' 'et.time'
 'climate.time' 'out.time'

 // daylen
 'daylen.daylen' 'et.daylen'
 'daylen.daylen' 'out.daylen'

 // soil
 'soil.surfaceRunoff' 'out.surfaceRunoff'
 'soil.surfaceRunoff' 'runoff.surfaceRunoff'
 'soil.soilMoistStor' 'out.soilMoistStor'
 'soil.actET' 'out.actET'

 // PET
 'et.potET' 'soil.potET'
 'et.potET' 'snow.potET'
 'et.potET' 'out.potET'

 // Snow
 'snow.snowStorage' 'out.snowStorage'
 'snow.snowMelt' 'runoff.snowMelt'

 // runoff
 'runoff.runoff' 'out.runoff'
 }

 parameter { // initial model parameter ‘comp.field’ value
 'climate.climateInput' "$oms_prj/data/climate.csv"
 'out.outFile' "$oms_prj/output/TW/out/output.csv"
 'runoff.runoffFactor' 0.5
 'daylen.latitude' 35.0
 'soil.soilMoistStorCap' 200.0
 }
 }
 // model efficiency (optional)
 efficiency(obs:"precip",sim:"runoff",
 precip:"precip", methods:NS+ABSDIF+TRMSE)
 // compute annual summary for runoff 'on-the-fly' (optional
 summary(time:"time",var:"runoff",moments:COUNT+MEAN+MIN,
 period:YEARLY)
 analysis(title:"Model output") {
 timeseries(title:"Monthly waterbalance", view: COMBINED) {
 x(file:"%last/output.csv", table:"tw", column:"date")
 y(file:"%last/output.csv", table:"tw", column:"runoff")
 y(file:"%last/output.csv", table:"tw", column:"daylen")
 }
 }
}

The connect{} section lists line-by-line data flow handled by the system. For
example, the line 'climate.temp' 'soil.temp' in Listing 1 connects the
‘temp’ output field of the ‘climate’ component with the ‘temp’ input field of the
‘soil’ component. This is the only information required to define and establish
data flow between components, which internally have those fields annotated using
@In and @Out annotations (see http://oms.javaforge.com for additional description
of OMS3 annotations). The entries in each line of the connect{} section follow
the ‘<object>.<field>’ notation. The field name can be omitted in the target
reference if it exists in both components with the same name. OMS3 performs

O. David et al. / Domain Specific Languages for Modeling and Simulation: Use case OMS3.

conversions of field types if both the source and target field types are different.
However, a conversion service is offered by OMS3 when two components are
connected using fields which are incompatible otherwise. For example, one
component providing an Open GIS Consortium (OGC) simple feature collection as
output can feed into another one requiring “well known text” (WKT, ASCII encoding
of geometries) input with no problems if a conversion class or service exists and is
offered via the service provider interface. The same mechanism is also used for
unit conversion or alignment of temporal and spatial scales between fields.

2.2 Ensemble Streamflow Prediction DSL

ESP is a simulation type for Ensemble Streamflow Prediction. It implements a
modified version of the National Weather Service’s ESP procedure (Day, 1985).
ESP uses historic or synthesized meteorological data as an analogue for the future.
These time series are used as model input to simulate future conditions. The typical
application of ESP is streamflow forecasting. The initial hydrological conditions of a
watershed, for the start of a forecast period, are assumed to be those simulated by
the model for that point in time. Typically, multiple hydrographs are simulated from
this point in time forward, one for each year of available historic data. For each
simulated hydrograph, the model is re-initialized using the watershed conditions at
the starting point of the forecast period. The forecast period can vary from a few
days to an entire year. A frequency analysis is then performed on the peaks and/or
volumes of the simulated hydrograph traces to evaluate their probabilities of
exceedance.

Listing 2 shows a Simulation DSL file for the PRMS (Leavesley et al., 2006) Java-
based model used for the USDA-NRCS water supply forecasting system in the
western United States. The simulation’s top level element defines it as an ESP
DSL. It uses elements from a basic simulation, such as model{},
outputstrategy{}, or resource{}. In addition, ESP specific simulation
parameters are added for defining the forecasting period and the historical years to
be used.

Listing 2
Simulation DSL example in OMS3 for an Ensemble Streamflow Prediction.

esp(name:"TetonEsp") {

 // define output strategy: output base dir and
 // the strategy NUMBERED|SIMPLE|DATE
 outputstrategy(dir: "$oms_prj/output", scheme:NUMBERED)

 // for class loading: model location
 resource "$oms_prj/dist/*.jar"

 // define model
 model(classname:"model.PrmsDdJhXyz") {
 // parameter
 parameter (file:"$oms_prj/data/teton/teton18_xyz_test.csv") {
 inputFile "$oms_prj/data/teton/teton_OMS_Data.csv"
 outFile "out.csv"
 sumFile "basinsum.csv"
 out "summary.txt"

 startTime "2003-10-01"
 endTime "2005-04-30"
 }
 }

O. David et al. / Domain Specific Languages for Modeling and Simulation: Use case OMS3.

 // the number of forecast days after the end of the simulation period
 //forecast_days 15
 // as an alternative you can pecify the end of the forecast period
 // as date.
 // choose one of th two options,

 forecast_end "2005-08-31"

 // historical years for to be used for traces
 // years are inclusive
 first_year 1981
 last_year 2004

 analysis(title:"Trace analysis") {

 // relative path name, last output
 esptraces(title:"teton", dir:"%last", var:"basin_cfs")
 }
}

2.3 ‘Luca’ Model Calibration

Luca (Hay, 2006) is a multiple-objective, stepwise, automated procedure for model
calibration. The calibration procedure uses the Shuffled Complex Evolution (SCE)
global search algorithm to calibrate any OMS3 model. Luca defines an OMS
simulation type for building and performing a procedure to calibrate parameters for
a (hydrological) model. It integrates the following components: (i) multiple-objective
step-wise calibration, (ii) SCE global-search parameter optimization, and (iii) OMS
model interoperability.

The PRMS model has been configured for parameter estimation using the USGS
Luca parameter estimation method (Hay, 2006). As shown in Listing 3, in addition
to the standard simulation elements such as outputstrategy{}, resource,
model, output, parameter, etc., a Luca DSL simulation (executable within OMS3)
defines additional elements for the calibration parameter bounds for each step or
objective function type.

Listing 3
Simulation DSL example in OMS3 for Luca parameter estimation.

/* Luca calibration.*/
luca(name: "EFC-luca") {

 // define output strategy: output base dir and
 // the strategy NUMBERED|SIMPLE|DATE
 outputstrategy(dir: "$work/output", scheme:NUMBERED)

 // for class loading: model location
 resource "$work/dist/*.jar"

 // define model
 model(classname:"model.PrmsDdJh") {
 // parameter
 parameter (file:"$work/data/efc/params_lucatest.csv") {
 inputFile "$work/data/efc/data_lucatest.csv"
 outFile "out.csv"
 sumFile "basinsum.csv"
 out "summary.txt"

O. David et al. / Domain Specific Languages for Modeling and Simulation: Use case OMS3.

 startTime "1980-10-01"
 endTime "1984-09-30"
 }
 }

 output(time:"date", vars:"basin_cfs,runoff[0]",
 fformat="7.3f", file:"out1.csv")
 calibration_start "1981-10-01" // Calibration start date
 rounds 2 // calibration rounds, default 1

 // step definitions
 step(name:”Et param”) {
 parameter {
 jh_coef(lower:0.001, upper:0.02, strategy:MEAN)
 }
 optimization(
 simulated:"out1.csv|EFC-luca|basin_cfs",
 observed:"$work/data/efc/data_lucatest.csv|obs|runoff[0]") {
 of(method:ABSDIF, timestep:DAILY)
 }
 }

 step(name:”soil param” {
 parameter {
 ssrcoef_sq(lower:0.001, upper:0.4, strategy:MEAN)
 soil2gw_max(lower:0.001, upper:0.4, strategy:MEAN)
 }
 optimization(simulated:"out1.csv|EFC-luca|basin_cfs",
 observed:"$work/data/efc/data_lucatest.csv|obs|runoff[0]") {
 of(method:ABSDIF, timestep:DAILY)
 }
 }
}

An OMS3 Luca simulation contains the usual elements for defining the model,
model parameter, and other resources. The main Luca elements are the round and
step definitions, where each step declares the parameter bounds with a calibration
strategy as well as the objective functions to be applied for this step.

3. DISCUSSION

Simulation DSLs are easily adjustable to new simulation types (e.g., parameter
estimation or uncertainty analysis methodology) and provide the model user with a
high degree of freedom in setting up complex simulations (e.g., batch processing of
multiple watersheds for stream flow or water quality prediction). DSL scripts allow
very concise and understandable expressions, although they can contain
“traditional” programming code. This flexibility makes them very attractive for
simulation integration and superior to “data-only” static representations for
capturing modeling metadata such as XML.

4. SUMMARY

OMS3 introduces an extensible and lightweight layer for simulation description that
is expressed as a Simulation DSL based on the Groovy framework. DSL elements
are simple to define and use for basic model applications or for more complex
setups for parameter estimation, sensitivity/uncertainty analysis, etc. The use of
DSLs for “programmable” configuration eliminates core programming language
“noise” and is efficacious for many different types of modeling applications (e.g.,

O. David et al. / Domain Specific Languages for Modeling and Simulation: Use case OMS3.

distributed watershed modeling to support automated setup of multiple batch model
runs).

REFERENCES

David, O., Ascough II, J.C., Leavesley, G., Ahuja, L.R., 2010. Rethinking modeling

framework design: Object Modeling System 3.0. In: Swayne, D.A., Yang, W.,
Voinov, A.A., Rizzoli, A., and Filatova, T. (Eds.), Proc. Fifth Biennial Conference
of the International Environmental Modelling and Software Society, Modelling for
Environment’s Sake, Ottawa, Canada, July 5-8, 2010, pp. 1183-1191.

Day, G.N., 1985. Extended streamflow forecasting using NWSRFS. Journal of
Water Resources Planning and Management, ASCE, 111:157–170.

Deursen van, A., Domain-specific languages versus object-oriented frameworks: A
financial engineering case study. In Smalltalk and Java in Industry and
Academia, STJA’97, pp. 35–39. Ilmenau Technical University, 1997.

Deursen van A., Klint, P., Visser, J., Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, 35(6):26-36, June 2000.

Donatelli, M., Rizzoli, A., 2007. A design for framework-independent model
components of biophysical systems. In: Hatfield, J., Donatelli, M., Rizzoli, A.
(Eds.), Farming Systems Design 2007: An International Symposium on
Methodologies for Integrated Analysis of Farm Production Systems, Catania,
Sicily, Italy, Vol.2, pp. 208-209.

Donatelli, M., Rizzoli, A., 2007. A design for framework-independent model
components of biophysical systems. In: Hatfield, J., Donatelli, M., Rizzoli, A.
(Eds.), Farming Systems Design 2007: An International Symposium on
Methodologies for Integrated Analysis of Farm Production Systems, Catania,
Sicily, Italy, Vol.2, pp. 208-209.

Hay, L.E., Umemoto, M., 2006. Multiple-objective stepwise calibration using Luca:
U.S. Geological Survey Open-File Report 2006-1323, 25p.

Leavesley, G.H., Markstrom, S.L., Viger, R.J., 2006. USGS Modular Modeling
System (MMS) - Precipitation-Runoff Modeling System (PRMS). In: Singh,
V.P. and Frevert, D.K. (Eds.), Watershed Models. CRC Press, Boca Raton,
FL. pp. 159-177.

Leavesley, G., David, O., Garen, D., Goodbody, A., Lea, J., Marron, J., Perkins, T.,
Strobel, M., Tama, R., 2010. A modeling framework for improved agricultural
water-supply forecasting. Proc. Joint 9

th
 Federal Interagency Sedimentation

Conference and 4
th
 Federal Interagency Hydrologic Modeling Conference, June

27 - July 1, 2010, Las Vegas, Nevada.
Lloyd, W., David, O., Ascough II, J.C., Rojas, K.W., Carlson, J.R., Leavesley, G.H.,

Krause, P., Green, T.R., Ahuja, L.R., 2011a. Environmental modeling framework
invasiveness: Analysis and implications. Environmental Modelling & Software
26(10), 1240-1250.

Rizzoli, A.E., Leavesley, G.H., Ascough II, J.C., Argent, R.M. Athanasiadis, I.N.,
Brilhante, V.C., Claeys, F.H., David, O., Donatelli, M., Gijsbers, P., Havlik, D.,
Kassahun, A., Krause, P., Quinn, N.W., Scholten, H., Sojda, R.S., Villa, F., 2008.
Chap. 7: Integrated modelling frameworks for environmental assessment and
decision support. In: Environmental Modelling and Software and Decision
Support – Developments in Integrated Environmental Assessment (DIEA), Vol.
3, A.J. Jakeman, A.A. Voinov, A.E. Rizzoli, and S.H. Chen (Eds.), pp. 101-118.
Elsevier, The Netherlands.

Tulach, J., 2008. Practical API Design: Confessions of a Java Framework Architect.
Springer, New York, NY.

