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Abstract: A domain-specific language (DSL) is usually a concise, declarative 
language that strongly emphasizes a particular problem domain. DSL methods and 
implementations in general are widely prototyped and applied for creating elegant 
ways to express properties, relationships, and behavior of real-world models. This 
paper introduces DSL use for creating models and simulations within the Object 
Modeling System 3 (OMS3) modeling framework. In OMS3, various DSL concepts 
have been adopted to complement general-purpose modeling languages such as 
Java, FORTRAN, and C. Design patterns, such as the builder pattern, have been 
adopted through the DSL to support the setup of complex simulations for various 
applications such as Ensemble Streamflow Prediction (ESP), model calibration 
(Luca), configuration of model efficiency calculation, or output visualization. 
Experience has shown that a well-balanced adoption of DSL principles, 
complemented with general-purpose language elements, enhances the efficiency 
of model application while reducing development effort for model developers and 
users. In addition, adoption of DSL principles provides a viable alternative to 
complex graphical user interface development. 
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1. INTRODUCTION 
 
A domain-specific language (DSL), in contrast to a general purpose programming 
language, is a programming language or specification language dedicated to a 
particular problem domain, a particular problem representation approach, and/or a 
particular solution technique (Deursen, 1997; Deursen et al., 2000). DSLs provide 
concise and strongly focused methods for data management and configuration 
setup of a program. They let users write simple business rules for a particular task. 
DSL designs are geared towards easy readability and DSL constructs often read 
like natural languages. The declarative DSL approach is motivated by the desire to 
allow coding without actually promoting it. The Object Modeling System 3 (OMS3) 
takes advantage of the DSL “builder” design pattern as provided by the Groovy 
programming language and DSL extension (Dearle, 2010). OMS3 defines 
simulation DSLs for various purposes. Basic model application, parameter 
estimation, sensitivity analysis, or ensemble streamflow prediction are a few 
examples of DSL variants in OMS3. These simulation DSLs allow the creation and 
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configuration of run-time simulations for OMS3; however, the simulation DSL is not 
inherently bound to this framework. 
 
2. SIMULATION DSLs 
 
What constitutes a simulation in the OMS3 context? A simulation DSL declares the 
resources needed to run an environmental model for a given purpose. A basic 
simulation in OMS3 consists of: 1) the component executable binaries, 2) model-
specific parameters and other (e.g., climate) input data in files or databases, 3) 
strategies for handling model output, and 4) performance evaluation methods, e.g., 
simple graphing/plotting or formal evaluation statistics. Additional information and 
resources may be required if the simulation includes parameter estimation, 
sensitivity analysis, or uncertainty analysis. A simulation DSL reads like structured 
text, such as XML or JSON. However, it is still executable code that might contain 
general purpose language constructs. The following sections present three different 
simulation types: (i) basic simulation, (ii) ensemble stream flow prediction, and (iii) 
model calibration using Luca. 
 
 
2.1 Basic Simulation 
 
Listing 1 shows a typical simulation DSL file (*.sim) for OMS3 which is directly 
executable using the OMS3 runtime. It has a hierarchical structure resembling 
some XML design approaches with two significant differences: 1) it is not as 
verbose as XML and is executable as a script, and 2) it may contain programming 
statements in the Java/Groovy programming language. The ability to parse and 
process a simulation DSL is part of the underlying Groovy runtime in OMS3. The 
“*.sim” file defines the model by listing all model components, defining connectivity 
of component fields, and providing initial parameter definitions. The simulation 
script file in Listing 1, as used within the Thornthwaite monthly water balance model 
presented in Lloyd et al. (2011a), provides underlying knowledge about component 
connectivity. Model components are specified within the components{} section in 
Listing 1. Component connection is represented via connect{} statements, 
indicating data flow from source to target. 
 
 
Listing 1 
Simulation DSL example in OMS3 for a monthly water balance model. 

 
sim(name:"TW") { 
    build(targets:"all") 
    // define output strategy: output base dir and 
    // the strategy NUMBERED|SIMPLE|TIME 
    outputstrategy(dir: "$oms_prj/output", scheme:SIMPLE) 
 
    // define model 
    model(iter:"climate.moreData") { 
        components {               // listing of all model components 
            climate 'tw.Climate' 
            daylen  'tw.Daylen' 
            et      'tw.HamonET' 
            out     'tw.Output' 
            runoff  'tw.Runoff' 
            snow    'tw.Snow' 
            soil    'tw.SoilMoisture' 
        } 
        connect {                 // component connectivity:  ‘source’ ‘target’ 
            // climate 
            'climate.temp'      'soil.temp' 
            'climate.temp'      'et.temp' 
            'climate.temp'      'snow.temp' 
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            'climate.precip'    'soil.precip' 
            'climate.precip'    'snow.precip' 
            'climate.time'      'daylen.time' 
            'climate.time'      'et.time' 
            'climate.time'      'out.time' 
             
            // daylen 
            'daylen.daylen'     'et.daylen' 
            'daylen.daylen'     'out.daylen' 
             
            // soil 
            'soil.surfaceRunoff'  'out.surfaceRunoff' 
            'soil.surfaceRunoff'  'runoff.surfaceRunoff' 
            'soil.soilMoistStor'  'out.soilMoistStor' 
            'soil.actET'          'out.actET' 
     
            // PET 
            'et.potET'           'soil.potET' 
            'et.potET'           'snow.potET' 
            'et.potET'           'out.potET' 
      
            // Snow 
            'snow.snowStorage'   'out.snowStorage' 
            'snow.snowMelt'      'runoff.snowMelt' 
             
            // runoff 
            'runoff.runoff'      'out.runoff' 
        } 
             
        parameter {         // initial model parameter   ‘comp.field’ value 
            'climate.climateInput' "$oms_prj/data/climate.csv" 
            'out.outFile'                  "$oms_prj/output/TW/out/output.csv" 
            'runoff.runoffFactor'     0.5 
            'daylen.latitude'            35.0 
            'soil.soilMoistStorCap' 200.0 
        } 
    } 
    // model efficiency (optional) 
    efficiency(obs:"precip",sim:"runoff", 
                 precip:"precip", methods:NS+ABSDIF+TRMSE) 
    // compute annual summary for runoff 'on-the-fly' (optional 
    summary(time:"time",var:"runoff",moments:COUNT+MEAN+MIN,   
                                  period:YEARLY) 
    analysis(title:"Model output") { 
        timeseries(title:"Monthly waterbalance", view: COMBINED) {   
            x(file:"%last/output.csv", table:"tw", column:"date") 
            y(file:"%last/output.csv", table:"tw", column:"runoff") 
            y(file:"%last/output.csv", table:"tw", column:"daylen") 
        } 
    } 
} 

 

The connect{} section lists line-by-line data flow handled by the system. For 
example, the line 'climate.temp' 'soil.temp' in Listing 1 connects the 
‘temp’ output field of the ‘climate’ component with the ‘temp’ input field  of the 
‘soil’ component. This is the only information required to define and establish 
data flow between components, which internally have those fields annotated using 
@In and @Out annotations (see http://oms.javaforge.com for additional description 
of OMS3 annotations). The entries in each line of the connect{} section follow 
the ‘<object>.<field>’ notation. The field name can be omitted in the target 
reference if it exists in both components with the same name. OMS3 performs 
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conversions of field types if both the source and target field types are different. 
However, a conversion service is offered by OMS3 when two components are 
connected using fields which are incompatible otherwise. For example, one 
component providing an Open GIS Consortium (OGC) simple feature collection as 
output can feed into another one requiring “well known text” (WKT, ASCII encoding 
of geometries) input with no problems if a conversion class or service exists and is 
offered via the service provider interface. The same mechanism is also used for 
unit conversion or alignment of temporal and spatial scales between fields. 
 
 
2.2 Ensemble Streamflow Prediction DSL 
 
ESP is a simulation type for Ensemble Streamflow Prediction. It implements a 
modified version of the National Weather Service’s ESP procedure (Day, 1985). 
ESP uses historic or synthesized meteorological data as an analogue for the future. 
These time series are used as model input to simulate future conditions. The typical 
application of ESP is streamflow forecasting. The initial hydrological conditions of a 
watershed, for the start of a forecast period, are assumed to be those simulated by 
the model for that point in time. Typically, multiple hydrographs are simulated from 
this point in time forward, one for each year of available historic data. For each 
simulated hydrograph, the model is re-initialized using the watershed conditions at 
the starting point of the forecast period. The forecast period can vary from a few 
days to an entire year. A frequency analysis is then performed on the peaks and/or 
volumes of the simulated hydrograph traces to evaluate their probabilities of 
exceedance. 
 
Listing 2 shows a Simulation DSL file for the PRMS (Leavesley et al., 2006) Java-
based model used for the USDA-NRCS water supply forecasting system in the 
western United States. The simulation’s top level element defines it as an ESP 
DSL. It uses elements from a basic simulation, such as model{}, 
outputstrategy{}, or resource{}. In addition, ESP specific simulation 
parameters are added for defining the forecasting period and the historical years to 
be used.  
 
Listing 2 
Simulation DSL example in OMS3 for an Ensemble Streamflow Prediction. 

 
esp(name:"TetonEsp") { 
 
    // define output strategy: output base dir and 
    // the strategy NUMBERED|SIMPLE|DATE 
    outputstrategy(dir: "$oms_prj/output", scheme:NUMBERED) 
 
    // for class loading: model location 
    resource "$oms_prj/dist/*.jar" 
 
 
    // define model 
    model(classname:"model.PrmsDdJhXyz") { 
        // parameter 
        parameter (file:"$oms_prj/data/teton/teton18_xyz_test.csv") { 
            inputFile  "$oms_prj/data/teton/teton_OMS_Data.csv" 
            outFile    "out.csv" 
            sumFile    "basinsum.csv" 
            out        "summary.txt" 
 
            startTime "2003-10-01" 
            endTime   "2005-04-30" 
        } 
    } 
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    // the number of forecast days after the end of the simulation period 
    //forecast_days 15 
    // as an alternative you can pecify the end of the forecast period 
    // as date. 
    // choose one of th two options, 
 
     forecast_end  "2005-08-31" 
 
    // historical years for to be used for traces 
    // years are inclusive 
    first_year 1981 
    last_year  2004 
 
    analysis(title:"Trace analysis") { 
 
        // relative path name, last output 
        esptraces(title:"teton", dir:"%last", var:"basin_cfs") 
    } 
} 

 
 
2.3 ‘Luca’ Model Calibration  
 
Luca (Hay, 2006) is a multiple-objective, stepwise, automated procedure for model 
calibration. The calibration procedure uses the Shuffled Complex Evolution (SCE) 
global search algorithm to calibrate any OMS3 model. Luca defines an OMS 
simulation type for building and performing a procedure to calibrate parameters for 
a (hydrological) model. It integrates the following components: (i) multiple-objective 
step-wise calibration, (ii) SCE global-search parameter optimization, and (iii) OMS 
model interoperability. 
 
The PRMS model has been configured for parameter estimation using the USGS 
Luca parameter estimation method (Hay, 2006). As shown in Listing 3, in addition 
to the standard simulation elements such as outputstrategy{}, resource, 
model, output, parameter, etc., a Luca DSL simulation (executable within OMS3) 
defines additional elements for the calibration parameter bounds for each step or 
objective function type.  
 
 
Listing 3 
Simulation DSL example in OMS3 for Luca parameter estimation. 
 

/* Luca calibration.*/ 
luca(name: "EFC-luca") { 
 
    // define output strategy: output base dir and 
    // the strategy NUMBERED|SIMPLE|DATE 
    outputstrategy(dir: "$work/output", scheme:NUMBERED) 
 
    // for class loading: model location 
    resource "$work/dist/*.jar" 
 
    // define model 
    model(classname:"model.PrmsDdJh") { 
        // parameter 
        parameter (file:"$work/data/efc/params_lucatest.csv") { 
            inputFile  "$work/data/efc/data_lucatest.csv" 
            outFile    "out.csv" 
            sumFile    "basinsum.csv" 
            out        "summary.txt" 
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            startTime "1980-10-01" 
            endTime   "1984-09-30" 
        } 
    } 
 
    output(time:"date", vars:"basin_cfs,runoff[0]", 
             fformat="7.3f", file:"out1.csv") 
    calibration_start "1981-10-01"         // Calibration start date 
    rounds 2                               // calibration rounds, default 1 
 
    // step definitions 
    step(name:”Et param”) {                      
        parameter { 
            jh_coef(lower:0.001, upper:0.02, strategy:MEAN) 
        } 
        optimization( 
           simulated:"out1.csv|EFC-luca|basin_cfs",         
           observed:"$work/data/efc/data_lucatest.csv|obs|runoff[0]") { 
            of(method:ABSDIF, timestep:DAILY)    
        } 
    } 
 
    step(name:”soil param” {                     
        parameter { 
            ssrcoef_sq(lower:0.001, upper:0.4, strategy:MEAN) 
            soil2gw_max(lower:0.001, upper:0.4, strategy:MEAN) 
        } 
        optimization(simulated:"out1.csv|EFC-luca|basin_cfs",    
               observed:"$work/data/efc/data_lucatest.csv|obs|runoff[0]") { 
            of(method:ABSDIF, timestep:DAILY)  
        } 
    } 
} 

 
An OMS3 Luca simulation contains the usual elements for defining the model, 
model parameter, and other resources. The main Luca elements are the round and 
step definitions, where each step declares the parameter bounds with a calibration 
strategy as well as the objective functions to be applied for this step.  
 
 
3.  DISCUSSION 
 
Simulation DSLs are easily adjustable to new simulation types (e.g., parameter 
estimation or uncertainty analysis methodology) and provide the model user with a 
high degree of freedom in setting up complex simulations (e.g., batch processing of 
multiple watersheds for stream flow or water quality prediction). DSL scripts allow 
very concise and understandable expressions, although they can contain 
“traditional” programming code. This flexibility makes them very attractive for 
simulation integration and superior to “data-only” static representations for 
capturing modeling metadata such as XML. 
 
 
4. SUMMARY 
 
OMS3 introduces an extensible and lightweight layer for simulation description that 
is expressed as a Simulation DSL based on the Groovy framework. DSL elements 
are simple to define and use for basic model applications or for more complex 
setups for parameter estimation, sensitivity/uncertainty analysis, etc. The use of 
DSLs for “programmable” configuration eliminates core programming language 
“noise” and is efficacious for many different types of modeling applications (e.g., 
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distributed watershed modeling to support automated setup of multiple batch model 
runs). 
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