
International Environmental Modelling and Software Society (iEMSs)
 2012 International Congress on Environmental Modelling and Software

Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany
R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds.)

http://www.iemss.org/society/index.php/iemss-2012-proceedings

Enhancing Model Reuse via Component-
Centered Modeling Frameworks: the

Vision and Example Realizations

Marcello Donatelli
1,2

, Iacopo Cerrani
1
, Davide Fanchini

1
, Davide Fumagalli

1
,

Andrea Emilio Rizzoli
3

1
European Commission, Joint Research Centre, Institute for Environment and

Sustainability, Via E. Fermi 2749, I-21027 Ispra (VA), Italy
2
CRA – Agriculture Research Council, Bologna, Italy

3
Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland

1
marcello.donatelli@jrc.ec.europa.eu

Abstract: Model frameworks have represented a substantial step forward with

respect to monolithic implementations of biophysical models. However, the

diffusion of such frameworks, as model development environment, beyond the
groups developing them has been very modest. The reusability of models has also

proved to be modest. The reason for the latter was attributed also to the lack of

standardization toward few frameworks. Emphasis has been placed on the
framework and even new implementations of models have been made targeting a

specific framework, likely assuming that the reusability of the model unit would
have been directly proportional to the quality of the framework. In any case, the

goal of several projects has been to make available the framework. Developers in

the operational arena, but even in research, have reacted by developing their own
framework. Still, the problem of model reuse has been largely unsolved; estimating

that increasing the flexibility for reuse would have added a costly overhead, in
terms of both complexity and possibly as lack of efficiency in the operational use.

The focus on frameworks has made software architects overlooking on the
requirements of reusability per se of model units. The component oriented

programming paradigm allows targeting intrinsic reusability of discrete model

units, and makes room for enabling advances functionalities in simulation systems.
This paper firstly present the abstract architecture of a component oriented

framework articulated in independent layers: Model, Composition, and
Configuration. The Application layer may link to any of these, to develop from

simple console applications to sophisticated MVC applications. Proofs of concept

are presented for each layer, including the BioMA framework of the European
Commission used for agriculture and climate change studies.

Keywords: component oriented programming; model discretization; model
composition

1. INTRODUCTION

Since many years, model frameworks have represented a substantial step forward
with respect to monolithic implementations of biophysical models [e.g. Hillyer et al.
2003]. The separation of algorithms from data, the reusability of services such as
I/O procedures and integration services, the target of isolating a modeling solution
in a discrete unit have brought a solid advantage in the development of simulation
systems as in OMS3 [David et al. 2011], and TIME [Rahman et al. 2003]. However,
the diffusion of such frameworks, as model development environment, beyond the
groups developing them, can be considered modest. The reusability of models has

Donatelli et al./ Enhancing model reuse via component-centred modelling frameworks: the vision …

also proved to be modest; a model unit for a given framework is not used in other
frameworks. The reason for the latter appears to be attributed also to the lack of
standardization toward few frameworks; the acronym YAMF – Yet Another Model
Framework - was created summarizing the envisioned goal of standardizing as
much as possible modelling frameworks. All of this has in fact created an obstacle
for model reuse. Emphasis has been placed on the framework and even new
implementations of models have been made targeting a specific framework, likely
assuming that the reusability of the model unit would have been directly
proportional to the quality of the framework. In any case, the goal has been to
make available the framework. Also, legacy model boxes have been interfaced
either to modeling frameworks via framework specific wrappers, of via intermediate
layers like OpenMI [Gregersen et al. 2005, 2007].
Increasing the flexibility of use of a specific framework, even within a domain,
requires an increasing level of complexity, which makes the cost of using it
resources demanding, especially if the user targets the development of a specific
application, which would likely use a subset of the features made available.
Decreasing the flexibility, within a specific domain, increases its possible reusability
by adding specific components and utilities, and by limiting the generic overhead
claimed from a very generic framework. However, goals and functionalities, even
within a domain, may partially vary across groups, and even the choices for I/O
procedures and data persistence may vary. Developers in the operational arena,
but even in research, have de facto reacted by developing their own framework, in
spite of the constantly improved, in terms of quality, offer of modeling frameworks.
Still, the problem of model reuse has been largely unsolved, and two possibilities
have been at hand: either 1) the use of discrete units of software, often being
strongly limited by the fact that such units were not developed for composition,
hence not making available a number of possible functionalities, summarized by
frameworks which have as explicit target purely linking data from one component
to another, or 2) reimplementation.
The focus on frameworks has made software architects at least partially
overlooking on the requirements of reusability per se of model units. Also, if the
development of a customized framework may be estimated to some extent as
unavoidable, building a framework based itself on framework-independent
components (e.g. plugins which may be reused via an adapter) would facilitate this
task. The component oriented programming paradigm allows targeting intrinsic
reusability of discrete model units, and makes room for enabling advances
functionalities in simulation systems. It also impacts on (specialized) model
frameworks development, causing a shift in requirements and consequently an
impact on architecture. However, the component oriented programming is not
sufficient per se in fostering model units reuse.
This paper explores the shift of paradigm represented by putting the focus on
components, rather than on frameworks, and presents concept and concrete
examples, used also at operational level.

2. FROM MODELS TO VIEWERS

A component can be defined as: “A unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject by composition by third parties” [Skyperski
et al. 2002]. The tools and utilities of a framework must respect the requirement of
context specific dependencies, to enhance reusability. If the design of a framework
is based on layers, its building block units must avoid dependencies from the
framework, and layers must be independent from each other.
According to the envisioned use and to the features requested for a specific
software realization, we propose a simulation system to be discretized in layers,
each with its own features and requirements. Such layers can be the Model Layer
(ModL), where fine granularity models are implemented as discrete units, the
Composition Layer (CompL), where basic models are linked into more complex,

Donatelli et al./ Estimating impact assessment and adaptation strategies under climate change
scenarios…

aggregated models, and the Configuration Layer (ConfL), which allows providing
context specific parameterization (in the software sense) for operational use.
Applications can span from simple console applications to user-interacting
applications based on the model-view-controller pattern, in the simplest cases
linking either directly to either the ModL or the CompL, or accessing model ConfL.
In all cases, the component oriented architecture allows implementing a set of
functionalities which impact on the richness of functionality of the system and on its
transparency. Layers implement no dependency among them, hence facilitating
the independent reuse of tools, utilities, and model components in different
applications and frameworks.

Figure 1. Layer-based software simulation system: Model layer: fine
grained/composite models implemented in components; Composition layer:
modeling solutions from model components; Configuration layer: adapters for
advanced functionalities in controllers; Applications: from console to advanced
MVC implementations.

When looking to the component model diagram of a possible modeling solution, we
can identify the three layers as in the example below: model components are
realizations of the model layer, and have no dependency from the other layers; the
package composing (linking them and providing services) is a realization of the
composition layer, again with no dependency to the others; finally, the package
making a modeling solution is a realization of the configuration layer which allows
building articulated applications. The configuration allows building an adapter to
use the modeling solution, whereas the composition could be used via different
adapters in different configuration frameworks. Similarly, each single model
component could be reused independently of the composition layer.

Figure 2. Example of modeling solution making use of the three layers, and
reusable outside the framework as either model composition or single components.

Donatelli et al./ Enhancing model reuse via component-centred modelling frameworks: the vision …

Typically, a legacy unit of code would be implemented via an adapter to the
configuration layer; however, such implementation may not make accessible all the
functionalities identified as requirements by the model and composition layers.

2.1 The model layer

One possible definition of a model, relevant to the work of developing components
for biophysical simulation, is a conceptualization of a process. When developing
code using the OOP paradigm, a model can be implemented in a class, providing
the estimation or generation of a variable (or a set of interrelated variables),
obtaining a fine level of granularity. There might be more than one way to do this. If
two different models estimate variable "A", those two models are alternatives for
estimating variable A even if they have different input requirements and different
parameters. As a consequence, the two models must be available as separate
units, and their input, parameters and output must be defined. Such units are here
called strategies, from the related design pattern introduced below. A way to have
a set of models available in a component, via the same call, including alternate
approaches, is the implementation of the design pattern Strategy (Mesketer, 2004).
This offers the user of the component algorithms which are alternative options
(strategies) for doing the same thing. When building a biophysical model
component, this allows in principle alternative options to be offered for estimating a
variable or, more generally, to model a process. This often-needed feature in the
implementation of biophysical models, if implemented in this way, comes with two
very welcome benefits from the software side: 1) it allows easier maintenance of
the component, by facilitating the addition of other algorithms, 2) it allows the easy
addition of further algorithms from the client side, without the need to recompile the
component, while keeping the same interface and the same call. The basic point
here is that a strategy (a model class) encapsulates a model, the ontology of its
parameters, and the test of its pre- and post-conditions. It can be used either
directly as a strategy (in this case we call it simple strategy, where simple indicates
that does not use other strategies as part of its implementation), or it can be used
as a unit of composition, as described below. A composite strategy differs from a
simple strategy because it needs other (simple) strategies to provide its output(s).
The list of inputs is given which includes all the inputs of all classes involved
(except those which are matched internally). The list of outputs includes all outputs
produced by each strategy and the ones specific to the composite class (if any).
The list of parameters needed includes those of the classes associated with and
the ones (if any) defined in the composite class. When the value of a parameter is
set, if the parameter belongs to an associated class, it is set on that class. The test
of pre/post conditions makes use of the methods available in each associated
simple strategy class, plus the new tests specified in the composite class. If a
violation of pre/post condition occurs in one of the associated classes, the
message informs the user not only about the violation that has occurred, but also in
what class it has occurred. Composite strategies do not differ in their use
compared to simple strategies. The interface used for models is the same for all
modelling solutions in the component, implementing the Composite pattern to hide
the complexity of model solutions based on composite strategies. This leads to
their being a single signature for internal and extended models. Composite
strategies too can be added to the components without requiring a re-compilation
of their code, thus providing a way to extend component models fully
autonomously by third parties. The adoption of the Composite pattern also allows
implementing the Create-Set-Call [Cwalina and Abrahams 2006] pattern to
maximize the application programming interface simplicity; once a developer gets
familiar with the interface of models of a specific domain, their use is immediate,
including extensions made autonomously by third parties. If a component is made
available consisting of strategies (and unit tests as requirement), a third party will
not change the code of the components, instead, it will provide either alternate
solutions to the existing modeling problems, or solutions to other modeling
problems in the same domain. In other terms, what is normally achieved via code

Donatelli et al./ Estimating impact assessment and adaptation strategies under climate change
scenarios…

sharing (co-development and debug) is proposed as two separate steps, in which
debug is done and certified by code owners, and extension may be provided by
third parties. As a side effect, this allows a clearer mechanism for preserving
intellectual property rights that what is implicit in open-source policies; however,
further discussing these aspects is out of the scope of this paper. Composite
strategies are solutions to modelling problems at a coarser granularity (in principle)
with respect to simple strategies. In other terms, a composite strategy is a “closed”
modelling solution which makes use of selected models of finer granularity as units
of composition (simple strategies). Such a closed solution is not proposed as the
unique solution for a specific modelling problem. An example of composite strategy
is presented in Villa et al. [2006]. This kind of composite models provide in fact a
sound foundation to select modeling approaches to be used at operational level. A
third type of strategy is the context strategy. In this type of modeling unit, logic is
implemented to select the strategy to be used at run time. Alternate model
approaches might be chosen, for instance, in response to values of inputs, or
based on the presence/absence of inputs. Details on the requirements of the
model layer are provided by Donatelli and Rizzoli, [2008]. The papers by Bregaglio
et al. [2012] and Confalonieri et al. [2012b] show examples of how the architecture
of the modeling layer fosters model development and reuse. The papers of Carlini
et al. [2006], Donatelli et al. [2006, 2006b], and Bregaglio [2012], present examples
of model components. A library of model components freely downloadable is
available with dedicated software development kit for reuse [Components 2012]

2.2 The composition layer

The composition layer is where models from different components are composed
to build a modelling solution. A concrete realization of the composition layer is a
modeling solution, which can however be made of one component only in this case
just for using the composition layer services. A model solution is developed and
used for a specific purpose (e.g. a “crop model” in which we link crop, soil water
and other sets of models to simulate water limited production of crops).
The layers are connected via implementation of the design pattern Adapter, and, in
fact, a realization of the configuration layer may be done connecting directly an
object from the model layer (hence not linking components within the layer at all).

The composition layer must include:

 Time handling, hence allowing for calls to models at the time step chosen
for communication across components in the modeling solution (the time
step chosen for communication is not necessarily the time step of the
modeling approaches used);

 Provide events handling (even if we can think of a framework like the one
of the composition layer as always event driven; in this case we refer to
actions which are triggered not at all time steps).

The composition layer may include:

 Integration services;

 Data services (in principle excluding persistence, which is part of the
configuration, hence belonging to the configuration layer and context
specific).

 Visual tools can be developed to assist creating code units to be compiled
and used by applications.

Functional requirements:

 Must allow re-use of components data-types;

 Allow transfer of modeling options/run options to/from the higher level
(Configuration level, Application);

 Require simple implementation of adapters of components to an instance
of the layer;

 Allow multiple exchange of data across components within time step;

Donatelli et al./ Enhancing model reuse via component-centred modelling frameworks: the vision …

 Implement an initialization and finalization method;

 Have its own scalable logging.

 Allow discovering via reflection links between components, and on the
quantities involved

 Allow discovering via reflection the components used

 Allow discovering via reflection inputs, outputs, and parameters of
modeling solutions

 Allow discovering via reflection modeling options made available as part of
specific modeling solutions

2.3 The configuration layer

Once a modeling solution has been developed, there is the need of providing it
with all the data necessary for its run, e.g. a weather series or soil data in the case
of a crop growth simulation model. These data can originate from various
deployment environments, for example a database, xml files, or remote web
services.
All these ways of providing a modeling solution with needed data are abstracted in
the concept of a configuration for a run of the modeling solution itself. This concept
is addressed in the Configuration Layer. This layer must expose functionalities to
code using the object needing to be configured, because this code must be able to
correctly configure it before the run. Also, the configuration layer must expose
handles to run a modeling solution iteratively, as it is requested for instance in
sensitivity analysis or during optimization.

Functional requirements

 Fill in values for items constituting the configuration.

 Verify their validity with respect to the environment of execution.

 Save a configuration for later reloading.

 Create recursive configuration structures, in case one of the items
constituting the configuration needs in turn to be configured (e.g.: once
chosen a database reader as the provider for a data series, fill in
credentials to connect to it). An implication of this requirement is that not
only a modeling solution must own a configuration, but also the non-trivial
components constituting the configuration itself.

 Support callback functions when the status of a configuration changes, to
refresh views attached in a Model View Controller architecture.

Non functional requirements

 A modeler should have to write as less code as possible to implement
these functionalities, allowing him to concentrate on the business logic of a
Modeling Solution. Hence, for the functional requirements, as much
implementation as possible should be provided in advance.

 To ease the realization of Modeling Solutions adapting third party models,
the implementation should not be provided in advance by means of an
abstract class, i.e., the common super type of each Modeling Solution must
be an interface.

3. EXAMPLE REALIZATIONS

Several model components have been developed, some presented or used in
papers in these proceedings. Compositions were also made and adapters to the
BioMA – Biophysical Model Applications configuration layer realization developed
[BioMA 2012]. Applications were developed leveraging of the layers described, and
depending on the Configuration layer. The modelling solutions shown in Fig. 3 are
visible to the application via adapters of the configuration layer. The application
developed is currently being used to run multiple modelling solutions in the domain

Donatelli et al./ Estimating impact assessment and adaptation strategies under climate change
scenarios…

of biophysical models in agriculture for the European Commission. The following
papers contain examples of heterogeneous modelling solutions being used in the
biophysical domain and all available in the proceedings of the conference: Manici
et al. [2012], Confalonieri et al. [2012], Donatelli et al. [2012], Maiorano et al.
[2012].

Figure 4. The BioMA application for biophysical simulation against explicit spatial
units. Single components and modeling solutions can be reused outside the
platform.

4. CONCLUSIONS

Adopting a the component oriented design, implementing models at fine granularity
to foster reuse and hybridization in modeling solutions, and avoiding dependencies
to modeling frameworks concretely fosters models re-use. The platform and
applications developed within the BioMA project are made available as concrete
examples for solution to operative problems, but, and of no lesser importance, as
single components made available which allow independent extensibility by third
parties. We claim that a greater focus on reuse, instead of specific framework, can
effectively allow achieving the goal of avoiding duplication of modeling engines,
sharing components of known quality.
The realizations of the architecture have been used for analysis delivered to the
European Commission covering Europe and Latin America with different levels of
abstraction. The overhead for the implementation of the architecture presented has
proved to be a modest toll with respect to the increased operational capabilities
achieved, as in many modeling frameworks. However, the requirements of the
model layer and of the composition layer make the discrete model units produced
reusable outside the framework, and provide advanced functionalities for their use
and their composition.

REFERENCES

BioMA 2012 Biophysical Models Applications

http://bioma.jrc.ec.europa.eu/bioma/help/ [verified May 15, 2012]
Bregaglio, S., 2012. PhD Thesis

ftp://mars.jrc.ec.europa.eu/public/marcello/Bregaglio/ [verified May 15, 2012]

http://bioma.jrc.ec.europa.eu/bioma/help/
ftp://mars.jrc.ec.europa.eu/public/marcello/Bregaglio/

Donatelli et al./ Enhancing model reuse via component-centred modelling frameworks: the vision …

Bregaglio S., Donatelli M., Confalonieri R., Acutis M. 2012. Comparing modelling
solutions at submodel level: a case on soil temperature simulation. These
proceedings.

Carlini L., Bellocchi G., Donatelli M. 2006. Rain, a software component to generate
synthetic precipitation data. Agronomy Journal 98, 1312-1317

Components http://agsys.cra-cin.it/tools/ [verified May 15, 2012]
Confalonieri R., Bregaglio S., Stella T., Negrini G., Acutis M., Donatelli M., 2012.

An extensible, multi-model software library for simulating crop growth and
development. These proceedings.

Confalonieri R., Bregaglio S., Donatelli M., Tubiello F., Fernandes E. 2012.
Agroecological Zones Simulator (AZS): A component based, open-access,
transparent platform for climate change – crop productivity impact assessment
in Latin America. These proceedings.

Cwalina K., B. Abrams, 2006. Aggregate components. In Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries.
Addison-Wesley, Courier in Westford, Massachusetts, USA. 235-271.

David, O., Ascough, J., Leavesley, G., and Ahuja, L.: 2011 Rethinking modeling
framework design: object modeling system 3.0, in: En- vironmental Modeling
International Conference Proceedings, 5- 8

Formetta, G., Mantilla, R., Franceschi, S., Antonello A., and R. Rigon, The JGrass-
NewAge system for forecasting and managing the hydrological budgets at the
basin scale: models of flow generation and propagation/routing, Geoscientific
Model Development Volume: 4 Issue: 4 Pages: 943-955

Donatelli M., Bellocchi G., Carlini L. 2006. Sharing knowledge via software
components: models on reference evapotranspiration. European. Journal of
Agronomy 24, 186-192.

Donatelli M., Carlini L., Bellocchi G. 2006b. A software component for estimating
solar radiation. Environmental Modelling and Software 21, 411-416.

Donatelli M., Rizzoli A. 2008 A design for framework-independent model
components of biophysical systems International Congress on Environmental
Modelling and Software iEMSs 2008 Proceedings of the iEMSs Fourth Biennial
Meeting, Barcelona, Spain, July 2008: 727-734

Donatelli M., Srivastava A., Duveiller G., Niemeyer s. Estimating Impact
Assessment and Adaptation Strategies under Climate Change Scenarios for
Crops at EU27 Scale. These proceedings.

Gregersen, J.B., Gijsbers P. J. A., Westen S. J. P., Blind M., OpenMI: the
essential concepts and their implications for legacy software, Advances in
Geosciences, 4, 37-44, 2005

Gregersen J. B., Gijsbers P. J. A., Westen S. J. P. 2007. OpenMI: Open modelling
interface. Journal of Hydroinformatics Vol 9 No 3 pp 175–191

Hillyer C., Bolte J., van Evert F., Lamaker A., 2003. The MODCOM modular
simulation system. European Journal of Agronomy, 18, 3-4, 333-343.

Maiorano A., Donatelli M., Fumagalli D. Potential distribution and phenological
development of the Mediterranean Corn Borer (Sesamia nonagrioides) under
warming climate in Europe. These proceedings.

Manici L., Donatelli M., Fumagalli D., Lazzari A., Bregaglio S. 2012 Potential
Response of Soil-Borne Fungal Pathogens Affecting Crops to a Scenario of
Climate Change in Europe. These proceedings.

Rahman, J.M., Seaton, S.P., Perraud, J.-M., Hotham, H., Verrelli, D.I., Coleman,
J.R., 2003. It's TIME for a new environmental modelling framework. In:
MODSIM 2004 International Congress on Modelling and Simulation, Modelling
and Simulation Society of Australia and New Zealand Inc,Townsville, Australia,
pp. 1727-1732Szypersky C., D. Gruntz, S. Murer, 2002 Component software -
beyond object-oriented programming. 2nd Ed. Addison-Wesley, London,
United Kingdom, 2002.

Villa, F., M. Donatelli, A. Rizzoli, P. Krause, S. Kralisch, F. K. van Evert 2006.
Declarative modelling for architecture independence and data/model
integration: a case study iEMSs Third Biennial Meeting, Vermont, July 2006.

http://agsys.cra-cin.it/tools/

