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Abstract: To tackle problems of integrated environmental management, flexible 
and powerful simulation models are needed in order to analyse the current state of 
natural systems or to project their future dynamics under given development sce-
narios. Beyond the mere simulation of physical processes, accompanying tasks like 
model calibration or optimization for specific hardware platforms are usually re-
quested here. The Jena Adaptable Modelling System (JAMS) is an open-source 
software platform that has been especially designed to address the demands of a 
process-based environmental model development and various aspects of model 
application. This paper gives an overview of JAMS and its underlying concepts and 
shows how its explicit representation of model structure and modelling entities can 
support parameter calibration and parallel computing. 
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1 INTRODUCTION 
 
Software frameworks and accompanying standards that allow for an easy imple-
mentation and linking of integrated environmental models have gained increasing 
attention during the last decade, both from model developers and users. The sys-
tems that have emerged range from pure interface solutions (i.e. focusing more on 
coupling already existing models) to simulation frameworks that also cover the cre-
ation of problem-tailored simulation components along given requirements. Re-
views and comparisons of currently available environmental modelling frameworks 
and their underlying techniques can be found in Argent (2005), Rizzoli et al. (2008) 
and Jagers (2010). 
The Jena Adaptable Modelling System (JAMS)

1
 is a simulation framework devel-

oped with a thematic priority on hydrological processes (Kralisch and Krause, 2006; 
Kralisch et al., 2007). Its focus is not on the coupling of existing environmental 
models but on the creation of problem-tailored models from well-defined process 
simulation components. These components simulate e.g. interception, potential 
evapotranspiration or soil temperature with conceptual or physically based algo-
rithms. Making use of the Java Native Access (JNA) library

2
, JAMS components 

may even wrap existing functionality offered via native shared libraries that were 
compiled e.g. from C/C++ or Fortran code. With regard to the spatio-temporal do-
main, JAMS aims to simulate environmental processes at discrete points in time 
and/or space. Such systems, often referred to as timed event system, are widely-
used by many distributed hydrological models applied in current practice. 

                                                      
1
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JAMS is a JAVA-based framework, developed under the GNU Lesser General Pub-
lic License. Depending on its application purpose it can be used in different execu-
tion environments (e.g. desktop and server based). In addition to functions for the 
creation and application of models, JAMS offers various software tools that cover 
frequently requested tasks in the environmental modelling context (e.g. for model 
calibration, parameter analysis and result visualization).  
The next section will give an overview of the JAMS architecture and its main con-
cepts. Section 3 is dedicated to describe how these support parameter calibration 
and parallel processing of JAMS models. 
 
2 JAMS CONCEPTS 
 
2.1 System architecture 
 
The JAMS framework is structured into three main sections, i.e. (i) the core library, 
(ii) the runtime system, and (iii) the base component repository (Figure 1). The core 
library contains the API definition and different global support functions, e.g. for 
loading models or for model data I/O during simulation. The application of the mod-
els is managed by the runtime system, which is responsible for loading and execut-
ing JAMS models and provides additional services for event logging or profiling. 
The base component repository 
offers standard functions often 
used in environmental simula-
tion models, e.g. providing geo-
spatial processing capabilities. 
The core library provides inter-
faces and data types both for 
the creation of modelling com-
ponents and the runtime sys-
tem. The latter can create and 
execute a JAMS model by ac-
cessing the component reposi-
tory and a model definition, 
which is defined by a XML doc-
ument.  
 
2.2 Model building blocks 
 
The main building block of any JAMS model is named component. A component is 
a JAVA class that implements some given interface defining different methods (init, 
run and cleanup). They have to be executed at according runtime stages that every 
JAMS model iterates through. Communication with the framework and other com-
ponents is handled by arbitrary public attributes that fulfill two conditions: (i) they are 
of a valid JAMS data type and (ii) they are marked by special JAVA annotations, i.e. 
syntactic meta-information defining their I/O type (read, write), default values, phys-
ical unit and boundaries (if numeric), and their purpose by means of a short text. 
This information is used both by the runtime system to setup and interlink attributes 
and by the graphical user interface (GUI) that provides support during model de-
sign. 
JAMS components can serve a variety of different purposes. The most important 
one is the simulation of environmental processes. An example is the calculation of 
potential evapotranspiration (PET), taking wind speed, temperature, humidity, ra-
diation and elevation as input and calculating PET as output, e.g. according to after 
Penman-Montheith. Other components typically found in JAMS models implement 
data I/O or statistical analyses. They are applied e.g. for reading basic data like 
land use and soil type attributes or for aggregating process simulation results over 
spatial model entities in a region of interest. The source code complexity of a JAMS 
process simulation component can range from less than 50 logical executable lines 
of code (SLOC-L) (e.g. for calculating radiation input) up to more than 500 SLOC-L 
(e.g. for more complex snow simulation algorithms).  

 

Figure 1. JAMS framework elements 
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A special type of components is a GUI component. In addition to standard compo-
nents they feature a graphical panel that serves as a container for arbitrary GUI 
elements. Added to a JAMS model, GUI components can be used to create graph-
ical output during model runtime, e.g. for showing simulation results by utilizing 
chart and mapping libraries.  
Components in JAMS are stateless objects, meaning that all processing infor-
mation has to be provided via attributes at each invocation of the component’s run 
method. Therefore, all state information (e.g. spatial attribute values) must be 
stored outside of the component.  
 

 
Figure 2. Context examples 

 
Although generally possible, temporal or spatial iteration is not meant to be done 
inside of components. Instead, this is subject of the second type of model building 
blocks, called contexts. A JAMS context is a special, compound-type component 
that can nest other components and contexts, named children. It serves three pur-
poses: (i) it controls the execution of its children; (ii) it controls the data exchange 
between its children, and (iii) serves as storage for its children’s states. Depending 
on the purpose of a given context, it might invoke its children multiple times over a 
number of iterations (Figure 2 left), only once if some predefined condition is satis-
fied (Figure 2 center) or only once in a sequence (Figure 2 right). The invocation of 
its children is controlled in a context’s run method, leaving full control over the way 
they are executed in the hands of the context 
developer. Due to this fact, contexts can 
address a wide variety of tasks, covering for 
example the application of different sub-
models depending on input data and user 
requirements or the calibration of models. As 
contexts are specialized components they 
can be nested in each other, allowing the 
creation of complex component hierarchies 
and execution control structures.  
Spatial and temporal iteration is provided by 
the spatial context and the temporal context, 
iterating over a set of spatial model entities 
or time steps respectively and invoking their 
children for each of them. A typical applica-
tion of both contexts is shown in Figure 3, 
with a spatial context nested inside of a tem-
poral context. Using this setup, conceptual 
models that simulate environmental pro-
cesses at discrete points in space-time can 
easily be represented in JAMS. 
 
2.3 Component data exchange 
 
Data exchange between components is managed by their surrounding contexts. 
For this purpose, each context features at least one state object which allows the 
storage of arbitrary JAMS data. These data are stored in data slots that can be 
dynamically added and removed as needed. By connecting their attributes to the 

 
Figure 3. Nesting of temporal 

and spatial contexts 
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same data slots, children can easily exchange data during model runtime 
(Figure 4).  
Sometimes it is necessary that a context can store more than one state, as it is the 
case with spatial contexts. In this case, each spatial model entity is reflected by a 
separate state, with its spatial attributes (e.g. elevation or slope) stored in data 
slots. While iterating over its spatial model entities, the spatial context can restore 
an entity’s state prior the invocation of its children and store it afterwards. This way, 
a context can provide access to different sets of attributes and thus maintain data 
exchange between its children over varying spatial model entities (Figure 4). 
  

 

Figure 4. Data exchange between components using state objects 
 
The same approach is applied for other context types where it is necessary to store 
and restore the state of their children (i.e. their input and output data) during execu-
tion. If there is no need to retain the state, the context uses only one state object, 
overwriting the data in its data slots in the case of repeated children invocation. 
 
2.3 Runtime behaviour 
 
A JAMS model is a special context called model context, which is a sequence-type 
context as shown in Figure 2 (right). Within this outermost context, other compo-
nents and contexts can be arranged and nested as needed. The execution of the 
model is started by iterating through the init, run and cleanup stages of the model 
context. This in turn will start the 
invocation of its children accord-
ing to a generalized activity 
scheme as shown in Figure 5. In 
the context’s init stage, its own 
init method is invoked first before 
it will iterate over its children and 
invoke their init methods accord-
ingly. During the run stage, the 
context will perform the following 
activity sequence depending on 
its behavior (e.g. in an iterated, 
conditional or sequential fash-
ion): (i) restore the current state, 
(ii) iterate over all children and 
invoke their run stage, and (iii) 
save the current state. After the 
run stage has been finished, the 
context enters its cleanup stage, 
invoking the cleanup stages of 
its children first and its own at 
the end. This means that in con-
trast to other frameworks, e.g. as 
based on the Discrete Event 
System Specification (DEVS) 
(Zeigler, 2000), the invocation of 

 

Figure 5.  Context runtime activities 
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JAMS components is not autonomously triggered by external events, but explicitly 
by the surrounding context. 
Using this approach, an entire JAMS model (i.e. model context) can easily be re-
used and combined with or nested in other components. A typical use case is mod-
el analysis and calibration, where a model context is added as a child to another 
context which allows the automated sampling of parameters of the internal model. 
 
3 MODEL OPTIMIZATION 
 
3.1 Use case J2000 
 
Applying the pattern outlined in Figure 3, environmental models that simulate spa-
tially distributed processes over time can be created easily. An example is the 
J2000 hydrological model (Krause, 2002) which has been successfully applied in a 
large number of catchment studies covering the lower meso- to lower macro-scale 
(Krause & Flügel 2005; Krause et al. 2006). J2000 simulates the water balance of 
hydrological catchments based on their spatial decomposition into hydrological 
response units (HRUs) (Flügel, 1996) for daily and sub-daily time steps. At each 
simulated time step, different runoff components are calculated for each HRU, fol-
lowed by a spatial routing of the lateral runoff components from HRU to HRU or 
HRU to stream segment respectively.  
Figure 6 shows the generic layout of J2000 in JAMS. The tasks executed during a 
simulation with J2000 can be sketched as follows: 

1. The model is initialized by reading spatial input data, i.e. a set of HRUs includ-
ing information about their land-use, soil and geological parameters and a set 
of stream entities as a basis for streamflow simulation. In addition, the sets of 
HRUs and stream segments are analyzed regarding their flow topology and 
ordered in such a way that an element is processed only after its contributors 
have been processed. 

2. At each time step, the needed time series input data are read and steps 3 to 5 
are executed. 

3. For each HRU, a set 
of local input data is 
calculated (e.g. by 
spatial interpolation 
of climate data) and 
various hydrological 
processes are simu-
lated (e.g. ET, inter-
ception and infiltra-
tion). Lateral runoff 
components are 
routed to HRUs and 
stream segments. 

4. For each stream 
segment, stream-
flow is simulated. 

5. Simulated data are 
aggregated and 
output. 

 
3.2 Model parallelization 
 
Spatially distributed models often have a high time and space complexity, i.e. de-
pending on the number of spatial model entities and process detail they demand for 
large amounts of process memory and computation time. While memory consump-
tion has become less constraining due to the availability of 64-bit operating systems 
and continuously dropping hardware costs, the runtime performance of environ-
mental simulation models remains a crucial point. Thanks to multi-core architec-
tures and cloud computing environments, the reason is not so much lacking CPU 

 

Figure 6. J2000 model layout in JAMS 
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power but model algorithms that are badly suited for concurrent processing. In gen-
eral, two requirements must be addressed here which are often closely related: 

1. The software platform used must offer support for the concurrent execution of 
processing routines.  

2. The model’s representation, i.e. its data and algorithms, must allow for an in-
dependent, parallel processing.  

For modern software the first requirement is barely a problem as multithreading is a 
common paradigm supported by many current programming languages. Further-
more, software interfaces like MPI

3
 offer standardized and well-tested support for 

distributed execution of simulation routines. The second requirement can become 
much more challenging as data and algorithms might induce strong interdependen-
cies between different parts of the model. This problem can often be observed in 
distributed environmental models where energy and substances are exchanged 
between spatial model entities. 
Due to its explicit 
representation of 
model structure and 
model entities, JAMS 
offers options to ad-
dress both require-
ments. The concur-
rent execution of 
processing routines 
is achieved by isolat-
ing sub-models that 
can be processed 
independently from 
each other. A typical 
use case for this 
scenario is the cali-
bration of simulation 
models. This can be 
done by embedding the model to be calibrated in a special JAMS context that con-
trols the calibration process (Figure 7). The OPTAS optimization assistant (Fischer 
et al., 2009) uses this approach to setup parameter calibration procedures for any 
given JAMS model based on a variety of optimization methods and objective func-
tions in a semi-automated way. In the setup shown in Figure 7, the model under 
calibration (right) can be executed concurrently for different samples of calibration 
parameters as interdependencies are not a problem here. The calibration context 
can be provided by the user as every other JAMS component, allowing calibration 
methods to be customized to high performance computing environments like com-
puter grids if needed. Applying this approach, the GridGain

4
 platform was success-

fully integrated and tested in OPTAS (Fischer et al., 2009). 
Looking at an ever increasing amount of available environmental information and 
the associated growing complexity of simulation models, parallel processing has 
become interesting on a sub-model level, too. Taking into account that multi-core 
processing is available in virtually every computer nowadays, this step seems even 
more compelling. Models that simulate environmental processes in a spatially dis-
tributed way seem to be a good candidate for parallel computing, but as pointed out 
before, attention must be paid to interrelationships between their spatial model enti-
ties.  
Applying this approach to JAMS and the J2000 model, only small changes have to 
be applied to the model layout, leaving the existing process components un-
touched. In a first step, the set of HRUs is partitioned into n HRU subsets, where n 
is the number of concurrent simulation processes. The challenge here is to find 
subsets that (i) can be processed independently and (ii) have a similar size. For 
hydrological models as J2000, the first requirement can be met by making sure that 
HRUs from the same sub-catchment are not distributed into different subsets. 

                                                      
3
 http://www.mcs.anl.gov/research/projects/mpi 

4
 http://www.gridgain.com 

 
Figure 7. Model calibration in JAMS with calibration 

context (blue) and J2000 example model (grey) 
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While the second requirement is 
not mandatory, a better balanced 
partitioning leads to a higher 
speedup. Although strongly de-
pending on the characteristics of 
the catchment (e.g. number of 
HRUs/sub-catchments) and the 
number of concurrent processes, 
experience has shown that a satis-
fying partitioning can be achieved in 
most cases. In a second step, n 
copies of the HRU context (cf. Fig-
ure 6) together with all its children 
are created and placed within a 
special context that replaces the 
HRU context (Figure 8). This con-
currency context makes sure that 
each of the copies is provided with 
one of the previously created HRU 
subsets. The conversion of the 
model is done by JAMS in a fully automated way, leaving only the implementation 
of the concurrency context and the HRU partitioning component in the responsibility 
of the user. 
The presented approach was tested on a standard workstation computer with a 
current 4-core CPU. In order to consider the impact of the number of HRUs on the 
achieved speedup, two J2000 models for different catchments were tested. The 
first model was represented by 614 HRUs, the second model was about ten times 
larger with 6,242 HRUs. A time period of 4 years was simulated with both models, 
using simple JAVA multi-threading for concurrent processing. 
Figure 9 shows the speedups that were achieved for both models using different 
numbers of CPU cores. Speedup is defined as the ratio between compute time 
using one core and compute time using multiple cores, i.e. a higher speedup 
means less compute time. The red dotted line marks the ideal speedup where the 
use of n cores results in 1/n compute time. The data clearly show that J2000 is well 
suited for in-model parallel computing, even though only parts of the model were 
processed concurrently (i.e. all components within the spatial context). Regarding 
the fact that nearly all physical 
processes are simulated here 
which sums up to about 85% of 
the overall compute time (135s for 
the larger model), this result is not 
that much surprising. 
With growing number of cores, the 
slopes of the speedup graphs 
decline which indicates that an 
increase of CPU cores will pay off 
only up to a certain point where 
the additional computational effort 
for parallel computing fully com-
pensates the associated gain. As 
indicated in the graph, this point is 
reached earlier when using less 
HRUs which is explained with the 
worse ratio of fixed vs. paralleliza-
ble computational effort. 
 
4 SUMMARY & CONCLUSION 
 
After introducing the main concepts of creating environmental models with JAMS, 
special attention was given to the adaptation of models to the requirements raised 
by model calibration and parallel computing. Due to the explicit representation of 
their structure and spatial modelling entities, JAMS allows to perform this task with-

 

Figure 9. Speedup of J2000 models 

 
Figure 8. JAMS context for concurrent 

processing of HRUs 
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out touching their processing components. After looking at parameter calibration 
methods, a generalized approach for model-internal concurrent processing was 
discussed. This approach uses standard JAMS components only, while existing 
process simulation components can be used without modification. The method was 
tested with two hydrological models featuring different numbers of modelling enti-
ties and proved to be more effective on the larger model. Ongoing work is focusing 
on fine-tuning the partitioning of spatial model entities and on the automated de-
ployment and parallel processing in cloud computing environments. 
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