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Abstract: DLES is a component-based framework integrating forest and soil 
simulation models with discrete spatial and temporal resolution. The task was to 
create the framework facilitating combination of stand-alone models of different 
spatial and temporal resolution with spatial interactions into the unified system, 
replacing models and comparing models against each other. Also, the feedbacks 
between these models can be implemented. The main features of the suggested 
approach are: 1) the system of models isn’t a ‘monolithic program’ (single 
executable file), but is a number of stand-alone modules that can be easily added 
to the system and removed from it; 2) modules exchange data with each other 
using the shared area of memory which is controlled by the special system unit, 
and therefore, do not have to be concerned with interconnectivity between sub-
models; 3) the module can be either sub-model or other data provider (file, 
database etc.). Some spatially explicit routines are implemented in the system, 
such as neighbourhood search, automatic iteration on simulation grid, calculation 
of distance between objects on this grid, and disposal of the edge effect. The 
customization of the system of models is being attained with the scheme of the 
system of models. 
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1 INTRODUCTION 
 
As ecosystem processes have a very wide range of spatial and temporal scales, it 
is possible to develop a great amount of models simulating these processes. The 
development of a simulation model is the quest about compromise between truth to 
nature of simulated object and simplification of its description. On one hand, it is to 
be wished that model will be able to represent as much as possible characteristics 
of object. However, the amount of necessary input data increases with an increase 
of model refinement. 
Traditional approach is the development of ‘monolithic’ programs with source code 
compiled into single executable file. It does not allow creating flexible system of 
models. It was noted by He et al. [2002] that solution of such problem can be 
achieved by so-called ‘modular-based’ applications. Modularity is one of principles 
of system constructing when functionally-related parts are being separated into 
modules. These modules can further be united into the whole system in runtime, 
i.e. after program start. Modular design has some advantages. For example, the 
development and modification of individual component is much easier task than 
development of the whole system of models. Different modules of the system can 
be written by different research groups working independently and using different 
programming languages and approaches to software development. The modules 
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of complex software systems can be easily replaced by others without full re-
compilation. It is also possible to create system changing its own functionality 
according to specified requirements. 
The purpose of this article is to describe structure, functioning and basic features 
of the framework for building of component-based systems of simulation models. 
More details are reported by Bezrukova et al. [2012, in press]. 
 
 
2 DLES: STRUCTURE, FUNCTIONING, FEATURES 
 
The main objective was to create a framework which can be used as the basis of 
assemblage of individual-based simulation models with discrete spatial and 
temporal resolution. However, DLES (Discrete Lattice Ecosystem Simulator) 
wasn’t developed as an all-purpose system. We wanted to create a framework 
which will facilitate the implementation of some routines arising during the 
development of models. So the model should be reconstructed into standardized 
model components, pieced together to form a new system of models with the 
desired characteristics. The development of the system of models can be greatly 
facilitated by using libraries of reusable model components. The system presented 
in this paper has its own niche between systems of models based on ‘monolithic’ 
concept (the model developer should be a programmer to write the whole system) 
and specialized mathematical frameworks with a set of pre-implemented methods 
and procedures, such as MATLAB-Simulink (see Gray [2011]), Wolfram 
Mathematica (see Wolfram [2003]), Maple (see Lynch [2010]), and others. Main 
requirements to the DLES structure and interface have been defined of many 
years of applications of the EFIMOD system of simulation models of forest growth 
and elements cycles in forest ecosystems [Komarov et al., 2003]. 
 
 
2.1 Structure 
 
Advantages and disadvantages of the existing implementations of component-
based systems were taken into account while developing DLES. It is focused on 
the simulation of complex ecological systems with discrete spatial and temporal 
step. DLES allows taking into account some specific problems coming from 
development of individual-based forest stand models, such as programming of 
local interactions between trees or matching of spatial and temporal scales. The 
simulation is carrying out on the two-dimensional grid with Cartesian coordinate 
system. This grid is divided into cells. This simplifies the development of models 
with localized objects (e.g. trees) by means of more simple and fast algorithms of 
searching of neighbours to describe the interactions between objects because both 
distance between trees and each tree’s position on simulation grid can be 
expressed in terms of cells instead of using the distance measurement units. Such 
structure also simplifies the representation of spatial discontinuity. 
Any DLES module (called ‘component’) is the functionally completed and self-
sufficient system unit. The system kernel is the main component. It provides 
interaction between components and their ‘team-work’ through performance of 
control and supporting of the data exchange. Shell provides user interface, i.e. it 
transfers user commands to the system and receives the results of modelling to 
display. Models (sub-models) are the implementations of algorithms which 
simulate certain processes in the ecosystem. Sub-models receive initial data and 
return the results of simulation. Files with input data also can be represented as 
sub-models. 
Each component is implemented as a dynamically linked library (DLL) or 
executable file (EXE) which contains operating algorithm implemented in machine-
language code. DLES uses COM-interfaces (see Rogerson [1997]) to link 
components so that these components can be written on different programming 
languages. At the current stage, we use for DLES this rather old technology 
instead of more modern and powerful .NET because COM copes all problems 
which we faced and don’t requires installation of additional software like .NET 
Framework for software execution. However, these technologies are compatible, 
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which will further provide us with smooth migration form COM to .NET. Thus, the 
system of models is a software system of components and links between them. 
Kernel integrates all components into the unified system using information that is 
enclosed in the scheme of the system of models. The scheme is the description of 
the system of models, which includes the list of all sub-models, theirs execution 
order and description of relationships between components. Scheme editor is a 
special program for easy and error-free editing of the scheme of the system of 
models. 
It is easy to create a new sub-model for DLES. The developer should make new 
DLL using any software development environment and add the common unit, 
which contains interface declarations as well as declarations and implementations 
of some service routines. Then developer should declare the main class of sub-
model (for example, TModel). All global variables of sub-model and 
implementations of the interface must be declared as class members. Sub-model 
constructor CreateComp and method GetModuleInfo must be declared as exported 
function. After that the DLL could be compiled and used in the DLES. 
The basic concept of DLES is to represent the descriptions of complex ecological 
processes as the assemblage of elementary ones. Each of these processes can 
be implemented in separate sub-model. 
The framework imposes no restriction on the complexity of the sub-model code 
itself. Sub-models are independent and not directly reference other components; 
interaction is indirect via updates to state variables. 
Each sub-model should provide some information: its name, spatial scale and 
temporal resolution. Also, the required input variables and available output 
variables should be listed. The variables that are external and available for other 
sub-models are called ‘ports’.  
Three spatial levels are implemented in the system: cell level, object level, and plot 
level. They have different execution ways and specific features of memory 
allocation for their variables. The plot-level sub-models run one time per time step, 
and the corresponding variables are related to the whole simulation plot. The cell-
level sub-models iteratively run for each cell of simulation grid at each step. The 
variables, which are corresponded to this kind of sub-models, are the two-
dimensional data arrays with the size equal to the size of simulation grid. The 
object-level sub-models are of the third kind. The variables of object-level sub-
models are linear arrays. The sub-models of this kind are designed for simulation 
of the objects which can be more than one on the simulation grid but which have 
an irregular spatial distribution (for example, trees). Therefore, the storage of such 
data in the cell-level variables is unpractical. Accordingly, the object-level sub-
model iteratively runs for each object on simulation grid during one time step of the 
system of models. 
The spatial levels are hierarchic; the plot-level sub-model can access the whole 
array of variables of object-level and cell-level sub-models. Plot-level sub-models 
can also manage own cell- or object-level variables. 
Such organization allows a range of spatial-dependent routines, such as searching 
of the nearest neighbours, estimation of the range between objects on the grid that 
is required, for example, for computation of degree of competitive interaction 
between trees. Embedded routines also include cells’ grouping on grounds of 
neighbourhood (or any other feature) that can be necessary, for example, when 
determining nutrition zones for each tree. All routines mentioned above will be 
implemented in the system kernel and will be run on demand. 
Sub-models included in the scheme can work with different temporal resolution. To 
provide the proper ‘team-work’ of sub-models, the system will operate with time 
step that equal to the minimal temporal resolution among all sub-models. 
 
 
2.2 Functioning 
 
When all sub-models are ready, it is necessary to combine them into the unified 
system. To describe such system the scheme is used. This is the XML-document 
consisting of three sections: (1) general description of the scheme; (2) the 
description of components; (3) the description of relationships between 
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components. 
The general scheme description contains the characteristics of the simulation grid 
(its size and size of cells), minimal and maximal numbers of time steps and user 
comments to the scheme. The description of component contains its name, path to 
the file from which the component should be loaded, its version, execution order, 
spatial and temporal resolution. The description of relationship contains 
relationship type, names of connected ports, and parameters of spatial and 
temporal synchronization and conversion of measurement units. 
All components are combined into the system of models under management of the 
kernel. At the initial stage, the kernel loads scheme and analyzes it. Then it loads 
all sub-models listed in the scheme and requests service information (spatial and 
temporal resolution of sub-model) and information about ports of sub-models. 
According to spatial scale and type of variable (numeric, string, Boolean or list), the 
kernel allocates memory. All ports of all sub-models are put into joint list of state 
variables managed by the system kernel. At that, each sub-model can access any 
of these state variables and get theirs values through pointers. 
Then the kernel analyses relationships listed in the scheme and connects their 
ports. As sub-models can work with different spatial and temporal resolution, and 
the ports of these sub-models may have different units of measurement, it is 
necessary to provide correct synchronization during data exchange. Therefore, the 
kernel calculates the coefficients of conversion for each pair of ports. The simplest 
situation is when it is necessary to convert measurement units. It is possible to 
convert not only simple (for example, [m] to [km]) but also complex (for example, 
[t ha-1] to [kg m-2]) measurement units. 
Moreover, kernel takes care of spatial and temporal synchronization. For example, 
let’s consider the relationship connecting ports of plot-level sub-model with monthly 
time step and plot-level sub-model with annual time step. According to the scheme, 
the plot-level sub-model should be run first. Kernel primarily runs first sub-model 
twelve times, following which the second sub-model will be run. The method of 
synchronization can be set by the user and saved in the scheme. For example, this 
may be computation of the sum for 12 month, or average value. The 
synchronization between sub-models with different spatial resolution is carried out 
in the same manner. 
At the final stage, the kernel initializes all sub-models, i.e. it sets the initial values 
for all input variables of sub-models. Now the system is ready to work. On the 
user’s command, the kernel runs the simulation for the given number of steps, 
successively running all sub-models in the same order as they listed in the 
scheme. 
 
 
2.3 Features 
 
DLES user interface is implemented as Shell component. Shell translates user 
commands to the kernel. Among such commands, for example, the initialisation of 
the system of models or run of the simulation experiment for a given number of 
steps. It also shows the results of simulation experiment. DLES is a scalable 
system and one can use different shells depending on the current task. 
For investigative and educational tasks, the shell with graphical user-friendly 
interface (GUI) is the most suitable one. This shell has many possibilities for the 
visualization of results such as diagrams and maps. Shell with GUI also allows 
making several simultaneous simulations with different sets of models and/or files 
with initial data and combining the results of these simulations on one graph plot to 
make a comparative analysis. 
Another type of shell is a console. It is the most suitable one for rapid computations 
due to high performance. The system of models can be run with command line 
parameters. For landscape-level modelling, it will be necessary to create a 
database-oriented shell connected with GIS. This kind of shell will allow making 
simulations for large territory and showing thematic maps with results. 
Often the problem arises when it is necessary to develop the models which must 
be run by the user only at certain steps instead of working at each step of the 
system of models (for example, the models of fire events which do not occur at 
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each step). Moreover, such models must be parameterized by data entered by 
user directly in runtime. Special class template is provided to facilitate the 
development of such kind of models. It contains a field which is the sub-model 
execution flag. Since the shell is allowed to modify the state variables, it is possible 
to set the initial parameters of ‘event’ sub-models in runtime. 
Specialized tool allows loading data from external sources: text files, datasheets, 
and databases. It can be represented in the scheme of the system of models as 
usual sub-model. This tool automatically imports all variables determined by user 
and represents they as the ports of this sub-model. 
Researchers are permanently faced with the necessity of various transformations 
of results obtained from simulations. Of course, one could make necessary 
recalculations after the simulation using additional software. However, DLES 
framework provides an easier way to implement these operations with a special 
component called Outputs. This is a virtual component which not implements any 
algorithms. The values of all ports of this component are calculated from the values 
of ports of other sub-models using logical or arithmetic expressions which are 
determined by user in the scheme of the system of models. The values of 
expressions are calculated by the kernel in runtime. 
DLES allows carrying out simulations not only in 2-dimensional but also in 3-
dimensional space. This feature can be implemented with 2-dimensional array of 
variables of list type where each list represents 3rd dimension. 
 
 
3 EXEMPLARY APPLICATIONS 
 
DLES allows simplifying routine work, e.g. comparison of different simulation 
scenarios or different versions of sub-models, site-specific calibration of 
parameters, analysis of the theoretical basis of sub-models, sensitivity analysis 
and verification. During the development of such system of models, we will use 
new possibilities provided by DLES for developing of large simulation model of 
forest ecosystem. One block of this system of models is ready now. This block 
simulates the dynamics of organic matter, nitrogen and calcium in soil. 
We used new version of, the model of soil organic matter (SOM) dynamics 
ROMUL. Earlier version was described by Chertov et al. [2001]. It allows 
calculation of the dynamics of SOM in forest. ROMUL is based on studying of 
successive stages of mineralization and transformation of fresh litter, which 
correspond to SOM pools in horizons L, F and H of forest floor and horizons in 
mineral soil. Rates of transformation can be obtained from the experimental data. 
Also, the temperature and soil moisture modifiers of the fluxes take a variety of 
forms given as step-wise defined functions. The optimal conditions for different 
fluxes are, however, somewhat different. This simple scheme allows for simulating 
dynamics of other elements of nutrition in soil. At some assumptions, we can link 
the calcium model with ROMUL through the SOM pools maintaining the same 
tracks of elements flows but with adding of several pools more. Compounds of 
calcium form the secondary minerals, which are relatively labile and can transform 
into exchangeable or available for plants pools of calcium. We assume that rates of 
decomposition and transformation between elements pools in soil horizons in this 
case are similar to these ones in ROMUL. Main pools of Ca in SOM are also 
similar with pools in ROMUL but with some corrections and additions. The model 
of calcium dynamics was described in details by Khoraskina et al. [2009]; Komarov 
et al. [2012]. Forest floor and mineral soil water contents and fluxes through forest 
floor and mineral soil layers were calculated using two-layer water balance model. 
The general scheme is shown in Figure 1. 
Sub-model of soil organic matter dynamics modSOMSoil simulates decomposition 
of litter and SOM in mineral soil (monthly income of litter fall cohorts from different 
compartments of different tree species from fLitterFall file and initial values of SOM 
pools from fInitValues file) in dependence on temperature and moisture of litter and 
mineral soil (monthly climatic data from fClimate file). The sub-model of SOM 
dynamics is linked with sub-model of calcium dynamics in soil modCaSoil through 
average nitrogen content in litter for calculation of the rates of decomposition of 
corresponding SOM and Ca pools. modCaSoil also obtains monthly data on the 
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amount of litter fall, initial values of Ca in soil pools and climatic data from 
corresponding input files. Sub-model modCaUptake calculates the beginning of 
vegetation period where the main driving variable is the sum of active temperatures 
obtained from fClimate file. fCaUptake file stores the annual amounts of Ca 
consumed by plants. modCaSoil recalculates these values with annual time 
resolution to daily/monthly time resolution using the output of modCaUptake. The 
model of soil water balance modWater affects the dynamics of leaching of Ca from 
soil profile in modCaSoil through output data on water flows and storages. Input 
parameters of this model with daily time step are stored in fWeather file. File 
fInitValues contains all data required for initialization of sub-models: stocks of soil 
organic matter, nitrogen and calcium in main pools, their concentrations in litter fall 
cohorts, and some constants for equations describing rates of decomposition of 
plant residues in soil, water balance parameters and constants. 
As it was mentioned above, DLES can manage sub-models on different levels of 
spatial organization. We used this feature to simulate spatial inhomogeneity of soil 
cover. To this end, we ran modSOMSoil sub-model on cell-level while other sub-
models were executed on plot-level. This allowed simulating the different SOM 
dynamics in each cell (0.5x0.5 m) of simulation grid. Further, we are going to 
implement spatially-explicit sub-models of litter fall distribution, ground layer 
vegetation and distribution of plant roots. These steps could be resulted in 
remarkable refinement of the model of SOM dynamics because it will account 
spatial inhomogeneity of litter income, microclimatic conditions and nutrients’ 
uptake by plants. It should be noted here that such a high level of detail, probably, 
is not needed when simulating some types of habitats such as meadows or agro-
ecosystems. In contrast, forest soils have extremely high level of heterogeneity and 
such model design is rather rational. It is possible to change the structure of the 
system of models and change one sub-model to another by editing the scheme 
instead of editing of program code and its further recompilation. 
 

 
 

Figure 1. The general scheme of block describing ‘soil dynamics’. Simplified 
representation: only the most important ports connecting components are shown. 

 
This system of models was applied for simulation of Ca dynamics in steady state 
forest (Khoraskina et al. [2009]). We applied simulation scenario with clear cutting 
after 10 years of steady state development. In 5 years after cutting the natural 
regeneration by spruce seedlings was simulated. Pools of Ca in forest floor and 
exchangeable Ca increased after cutting, in comparison with scenario without 
cuttings. Ca in forest floor increased in 10 years after regeneration. The pool of 
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exchangeable Ca had the slower increase. Available Ca (Figure 2, A) had similar 
dynamics as exchangeable Ca with a peak after cutting. Then it decreased and 
began to accumulate after 35 years. Ca leaching (Figure 2, B) had similar 
dynamics, but there were remarkable values of Ca leaching after cutting. 
 

 
Figure 2. The dynamics of Ca available for plants (A) and Ca leaching (B) in 

steady state spruce forests in Russian northern taiga. Vertical axis – Ca stock (kg 
m-2); horizontal axis – simulation step (month). 

 
In this example, we presented the complex system of models. At the first stage of 
simulation, we calibrated system under the scenario with stable climate for main 
pools of SOM and calcium in soil using some calibration parameters in fInitValues 
file. DLES was very useful for facilitating and accelerating of the process of 
calibration because of doing this in real-time with results obtaining immediately. 
After calibration we simultaneously simulated two projects (steady state scenario 
and clear cutting scenario) and compared results real-time using the features of 
DLES. More examples are reported by Bezrukova et al. [2012, in press]. 
 
 
4 CONCLUSION 
 
New component-based framework is suggested. It is a scalable system, so it can 
be used for building of large simulation models of terrestrial ecosystems in different 
climatic regions taking into account various impacts and silvicultural practice. It 
allows easy combining of sub-models and provides a range of routines to facilitate 
accounting of spatial-explicit interactions within sub-models. The system of models 
within DLES framework has standard description based on human-readable XML. 
This description includes the list of sub-models and definition of theirs interaction. 
DLES allows data exchange between sub-models which work with different spatial 
and temporal resolution. There is also a set of statistical procedures for data 
processing, comparison of models and sensitivity analysis. When developing 
DLES, we didn’t aim at creating of universal simulation environment. The main task 
was to develop a tool for combining of spatial-explicit models, i.e. models taking 
into account the location of simulated objects and distance between them 
(Goodchild et al. [2002]). DLES is pointed on implementation of discrete models, 
where an area of simulation divided into cells and location and distance can be 
expressed in terms these cells. Special attention was paid to modelling of forest 
ecosystems. This resulted in some specific features, such as support of 3D spatial 
structures, object-level variables and sub-models, and spatially-dependent 
routines. No need in full universalization allowed us to create rather simple system 
in terms of structure and user interface. This approach is different from the all-
purposed complex environments such as MATLAB-Simulink, or others. Flexibility is 
other aspect of this approach. DLES specifies only the protocol of data exchange 
between different components, allowing arbitrarily complex internal implementation 
of the sub-models. Convenient and flexible data exchange mechanism is also an 
important feature of DLES. The individual state variables are the basic unit of data 
exchange instead of full sets of model outputs. The detailed settings of 
temporal/spatial scale synchronizing and conversion between different measuring 
units are possible. The approach used in DLES is the most similar to OpenMI 
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(Gregersen et al. [2007]) and Capsis (de Coligny [2005]). The most remarkable 
difference from the OpenMI is a unified user interface and unified management of 
input data, which are common to all models in the system. Unlike CAPSIS, DLES 
allows models written with any programming language supporting COM. Changes 
in the structure of the system of models do not require recompilation of the entire 
system. In contrast to many other frameworks, kernel unit and user interface in 
DLES are separated. This allows creating a various independent implementations 
of GUI for different tasks. 
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