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Abstract:  This paper investigates a two-component model of population dynamics 
with seasonal reproduction. Density-dependent regulation is realized by varying the 
reproductive age. Analytical and numerical research of the model is made, and the 
model is approved using data on the natural population number. It is shown that the 
regulation of reproductive age is realized primarily by the number of mature 
animals. The growth of juvenile survival leads to the emergence of biennial 
oscillation. 
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1 INTRODUCTION 
 
The analysis of character and mechanisms of oscillations in natural population 
number still remains one of the key problems in population biology. The cyclic and 
chaotic modes discovery in the simplest models of biological population dynamics 
[Ricker, 1954; May, 1974; Shapiro and Luppov, 1983] has given a new impact 
impulse to the nature of population fluctuations research. Substantiation and 
development of the population matrix models [Leslie, 1945; Lefkovitch, 1965; 
Jensen, 1995; Caswell, 2001; Logofet, 2008] makes it possible to describe and 
study in detail the role and significance of the age structure and stages of maturity 
for the population recurrence support and evolution. 
 
In particular, it was shown that there was a possibility of fluctuations and chaos 
existence in populations with age structure, in the event that the average lifetime 
reproductive rate of the population is sufficiently high [Hastings, 1992; Lebreton, 
1996; Kooi, Kooijman, 1999; Kaitala et al., 2000]. The directional change in 
demographic parameters of populations may cause a loss of the population stability 
and call forth the irregular dynamics. However, for the structured isolated 
population, the actually found periods are extremely narrow and many of natural 
species demonstrate evidently stable or quasicyclic dynamics [Bobyrev, Kriksinov, 
2006; Lutton-Brock et al., 1997; Wickens, York, 1997; Kendall et al., 1998; 
Siriwardena et al., 1998; Bjornstad et al., 1999; Fewster et al., 2000; Freckleton, 
Watkinson, 2002; Ginzburg et al., 2010].  
 
In this paper we trace the evolutionary scenarios of oscillatory and chaotic modes in 
the populations having a simple age structure. At the same time, the nonlinear 
interaction of different age groups of individuals in forming the population 
demographic parameters, observed in nature, are taken into account. This 
statement of the problem allows revealing the fundamentally new evolutionary 
scenarios of chaotic modes of dynamics when density-dependent regulation of 
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population growth is realized by varying numbers of mature animals. In nature the 
reproductive age of mammals may vary due to an increase in density caused by 
population growth. For example, in a population of voles (Clethrionomys rutilus) 
inhabiting the taiga zone of Russia, high population density leads to a change in 
reproductive age, which ultimately reduces the number of births . This phenomenon 
has also been observed in populations of African elephants and foxes. In this 
paper, we propose a model describing the dynamics of populations in which the 
regulation is realized by varying numbers of mature individuals. We have made an 
analytical and numerical investigation of the proposed model and tested it using 
data on natural population numbers. 
 
 
2 MATHEMATICAL MODEL 
 
We use a discrete time two-component model for describing population dynamics 
regulated by changing reproductive age. This model is a modification of the system 
investigated by other researchers [Frisman et al., 2011]. We consider the 
population which, by the end of each reproductive season, consists of two age 
groups: juveniles (immature individuals) and adults (participants in the reproductive 
process). We assume that the time between two reproductive seasons is enough 
for the juveniles to become adults. The equations of population dynamics are as 
follows: 
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where x  is a number of juveniles, y  is a number of adults, n  is a reproductive 
season number, a  is the birth rate, s  ( 10 <£ s ) and v  ( 10 ££ v ) are the survival 
rates of juveniles and adults, respectively. Function ),( yxd  is an exponential 
function selected following Ricker’s model [Ricker, 1954] and has the form:  

yxdeyxd ×-×-= ba),( , where d  ( 10 <£ d ) is the coefficient describing the fraction of 
individuals who became mature in the absence of density-dependent factors. a  
and b  are the intensities of the part of individuals who became mature decline 
because of the growth of juvenile and adult numbers, respectively. The function 

),( yxd  monotonously decreases as its arguments increase. 
 
 
3 MODEL RESEARCH 
 
In this paper, we investigate a situation where the parameter d equals 1 for the 

function yxdeyxd ×-×-= ba),( . This equation corresponds to the natural populations in 
which all newborn individuals become mature in the absence of overpopulation. 
This model has five parameters; hence, it is possible to form a view of the 
emerging dynamic modes in the system on the basis of research into particular 
cases, when 0=a , 0=b , ba = . Investigation of the special problems allows 
analyzing the dynamic modes of the system describing a situation when there is 
dominant class oppressing another age group. 
 
 
3.1 Case 1: reproductive age depends on the number of individuals in the 
mature class  ( 0=a ). 
 
In this particular case, our model is as follows: 
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The substitutions xx ®×b  and yy ®×b   transform (2) into 
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The only non-trivial stationary solution of (3) exists if 10 <£ s  and 10 <£ v , 

1>+vas  and has form: 
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The standard method of finding the stability domain is based on the following 
theorem: Solutions of the equation 02 =++ qpll  belong to the circle 1<l  if 

and only if 11 <<- qp . Another study [Shapiro and Luppov, 1983] shows that the 

inequalities define in the plane ),( qp  a “triangle of stability.” Its boundaries are 
given by the lines: 
 
(1) pq --= 1 , on this line one of the eigenvalues l  is equal to 1; 

(2) 1-= pq , on this line one of the eigenvalues l  is equal to �1; 

(3) 1=q , on this line eigenvalues are complex numbers 121 =ll , and on the 

segment ( 22 <<- p ), limiting the “stability triangle”, they are also conjugate: 

)exp(1 fl i= , )exp(2 fl i-= . 
 
The stability boundaries of the nontrivial equilibrium (4) are determined based on 
the eigenvalue values of characteristic polynomials for linearized system (3): 
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The stability domain for the non-zero equilibrium (4) is formed by the curves (5) and 
(6). The curve (7) does not restrict the stability domain of the stationary point. The 
boundary of stability (5) coincides with the existence condition of the trivial 
equilibrium. The behavior of the curve (6) depending on the parameter values s  is 
shown in Figure 1. Evidently, the area stability of nontrivial equilibrium (4) is 
narrowed with increasing values of coefficient s . 
 

       

Figure 1. Maps of dynamic modes at 0=a  on the parameter plane �v, . 
The numbers are marked periods of observed oscillations. 
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In this case, the stability loss of non-zero equilibrium occurs through period 
doubling. The resulting dynamic modes in the irregular dynamics area are 
presented in Figure 1. Thus, if the reproductive age of individuals depends on the 
number of people in the mature group, then the increase in juvenile survival leads 
to occurring oscillation, and narrows the region of demographic parameters where 
the population develops in a stable manner. 

 
3.2 Case 2: reproductive age depends on the number of individuals in the 
juvenile group  ( 0=b ). 

 
The dynamic equations in this case are as follows: 
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The substitutions xx ®×a  and yy ®×a  transform (8) into the system 
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The system (9) has unique non-zero stationary solution:  
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Inequalities 10 <£ s , 10 <£ v  and 1>+vas  are necessary for its existence. 
 
Boundaries of the stability domain for the non-zero stationary solution (10) are 
defined by the following conditions:  
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The stability boundary (11) coincides with the existence condition of the zero 
equilibrium. On the parameters plane ),( va  at 10 <£ v  the curve (12) is in the 

area sva /)1( -<  and below the curve (11).  
 

     
 

Figure 2. The curve (13) for fixed 
values of the parameter s . 

Figure 3.Map of dynamic modes at 4.0=s  
on the parameters plane �v, . The numbers 
are marked periods of observed oscillations. 
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Curve 13 restricts the stability domain of the non-zero equilibrium (10), and its 
behavior depending on the parameter values s  is shown in Figure 2. There is an 
added map of dynamic modes at fixed value of the juvenile survival parameter 
(Figure 3). 

 
The growth parameter value s  leads to a narrowing of the area stability of the 
nontrivial equilibrium. When the coefficient s reaches a critical value 513.0»s , the 
increase of the parameter leads to an expansion of the stability domain. The 
parametric portrait of the parameter plane ),( sv  illustrates why there is an 

extension of the area stability. 

   
Figure 4. The curve (13) for fixed 

values of the parameter a  
Figure 5. Map of dynamic modes at 100=a  
on the parameters plane sv, . The numbers 
are marked periods of observed oscillations. 

 
In this type of density-dependent regulation, the irregular oscillations occur at 
periods representing the high reproductive abilities of individuals. This condition is 
typical for species having several offspring during a breeding season. Loss of 
stability may happen only if the solutions for the characteristic equation of system 
(9) are conjugate at l  transition through 1. 

 
3.3 Case 3:  reproductive age depends on the number of all popul ation  
( ba = ). 

 
Population dynamics equations for this population type are as follows: 
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Substitutions xx ®×a  and yy ®×a  transform (14) to 
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The system (15) may have only one non-trivial stationary solution (16), it exists if 

10 <£ s  and 10 <£ v , 1>+vas . 
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Stability loss of solution (16)  may happen only if the solutions for the characteristic 
equation of system (15) are conjugate at l  transition through 1. Emerging 

dynamic modes are presented in Figure 6. 
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Figure 6. Maps of dynamic modes 

a) at 5.0=s  on the parameters plane �v, ; b) at 50=a  on the parameters  
plane sv, . The numbers are marked periods of observed oscillations. 

 
In this case, the system behavior is similar to the case when the density-dependent 
regulation realizes only the juvenile group. The stability loss is accompanied by an 
invariant curve formation. At the same time, the number of the juvenile class is the 
dominant factor because the addition of mature group influence does not have any 
new effects (comparison cases 0=b  and ba = ). 
 

 
Figure 7. Parametric portraits for cases where a density regulation of population 
realizes only juvenile class ( 0=b - 2) and the total population number ( ba = - 3) 

 

We compare parametric portraits for cases 0=b  (density-dependent regulation of 

population realizes only juvenile class) and ba =  (density-dependent regulation of 
population realizes total population number) (Figure 7). At the same birth rate, case 
3 has a narrower area of demographic parameters where there is irregular 
dynamics, than case 2. In Figure 7, the area of chaotic dynamic is domain bounded 
by the red or blue curve and the axis of ordinates. It should be noted that at high 
birth rates, the difference between these types of regulation is practically absent. 
Hence, at the density-dependent regulation of type 3, the influence of adult group 
size on the immature individuals number shows that becoming mature is 
unimportant (Figure 7). 
 
 
3 SIMULATIONS  
 
The next step is the application of equations describing the varying reproductive 
age, to the description and analysis of population dynamics on the basis of data on 
natural population number.  
 
For the forest vole kind of Microtus, the characteristic fluctuation of reproductive 
age is a result of an increase in population size. From the available data, we use 
the estimates of field vole (Microtus oeconomus) population size in the Altai 
Mountains [Efimov, Kovaleva, 2001]. The data refer to the number of harvested 
individuals. We assume that the number of harvested individuals is proportional to 
total population size; therefore, harvest size is taken for the population relative 
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number. By the Levenberg–Marquardt algorithm, it was estimated through the 
model parameters: 7.16=a , 49.0=s , 15.0=v , 00094.0=a , 4.25=b . 
 

�
Figure.8. Number dynamics of  a) population of field-vole, b) populations of foxes; 

where R - the real data, M - the model data. 
 
The obtained coefficients are biologically meaningful. A low survival rate of mature 
individuals corresponds to the short lifespan of this species. The value of birth rate 
does not contradict the biological characteristics of this species. The founded 
estimations of intraspecific interactions between individuals show that reproductive 
age is highly dependent on the number of individuals in the mature group. 
 
This model may also be applied to describing the dynamics of the fox population. In 
a litter of fox, there are usually 4 to 6 or 12 to 13 pups. Some female foxes begin to 
participate in reproduction at the age of one, and the remaining individuals reach 
sexual maturity at the age of two. Such regulation of reproductive age changes the 
existing age structure of populations and affects fertility. There are years when up 
to 60% of the females of this species remain without posterity. This condition is due 
to the fact that the mating period of foxes and its effectiveness depend on the 
weather and the animals’ weight. Estimation of model coefficients for 
the fox population is demonstrated by the Levenberg–Marquardt algorithm: 7.8=a , 

62.0=s , 41.0=v , 004.0=a , 78.1=b . The simulation results are shown in Fig. 8. 
 
 
4 CONCLUSION 
 
If density-dependent regulation of reproductive age is realized by mature group 
size, then the growth of juvenile survival leads to the emergence of biennial 
oscillation. If the reproductive age depends only on the number of the immature 
class or the total population figure, then irregular oscillations occur at periods 
representing the high reproductive abilities of individuals. This aspect is 
characterized in the case of species having several offspring during a breeding 
season. An increase in the juvenile survival rate may lead to number fluctuations. 
However, if more than half the number of immature individuals survives, then the 
population size is stabilized, and the fluctuations are possible only at a high birth 
rate. 
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