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Abstract Given the complexity of Waste-Water Treatment Plants (WWTPs), both from
the environmental, legal and economic point of view, Environmental Decision Support
Systems (E-DSSs) are getting wider adoption to monitor and manage the plants in real
time. From a cognitive perspective, the knowledge required by an E-DSS may be encoded
in different forms. In this paper, we argue that the operational domain and its most
relevant concepts should be defined in a proper ontology, providing a vocabulary to
encode inferential or operational knowledge in the form of decision-making rules. The
rules process information extracted from data, acquired through sensors and possibly
processed using predictive or analytic models. Eventually, the rules themselves and the
actions they recommend, can be orchestrated as business processes, using workflow
models. Moreover, we argue that standard formats should be used to facilitate the
formalisation and exchange of knowledge between different systems, including OWL 2
(ontologies), RIF/RuleML (rules), BPMN 2.0 (workflows) and PMML (predictive models). Finally,
we present a use case modelling a periodic plant monitoring routine which is necessary to
check that the plant emissions are compliant with the national legislation. The system,
implemented using the open source Knowledge Integration Platform Drools, exploits a
hybrid knowledge base but relies on a unified data model and execution environment.

Keywords: Environmental Decision Support Systems; Knowledge-Base Systems; Waste-
Water Treatment Plants; Hybrid Systems

1 INTRODUCTION AND RELATED WORKS

For many years, the management of Waste-Water Treatment Plants (WWTPs) has been
performed manually by human operators with a deep and practical knowledge of these
plants. Since well-skilled and experienced personnel is not always available, great impor-
tance has been given to automation techniques in order to improve the efficiency of the
processes and to reduce the operational costs.

Even if automation is the natural domain of control theory, WWTP management has also
become a relevant field for researchers in Artificial Intelligence (AI). Many researchers have
applied AI-based technologies, often involving Artificial Neural Networks (ANNs) and/or
Fuzzy Logic (FL) [Garcia et al., 2007; Shi and Qiao, 2010], to implement “intelligent” control
systems. These techniques can be applied with good results in terms of performance and
robustness, especially when the relationships between inputs, system states and control
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actions are not linear, as in the WWTP case. They can be used both as an alternative to
model-based controllers, or combined with more traditional approaches to create hybrid
control systems [Sottara, 2010].

Since the management system would effectively act as an expert operator, the choice of
an “Expert System (ES)” [Riley and Giarratano, 1998] can be considered. We will focus on
knowledge-based “Decision Support Systems (DSSs)” as an evolution of ES: in particular,
we will consider Environmental Decision Support Systems (E-DSSs), i. e.those DSSs applied
to environmental use cases and, even more specifically, WWTPs. An E-DSS operates on
different types of information, at different levels of abstraction. At lower levels, reactive
computations need to be executed in real time on quantitative data; moving towards higher
levels of abstraction, the processed information becomes more structured and symbolic
and can even be shared and exchanged with the human operators.

E-DSSs have a much broader scope than control algorithms encapsulated in control
modules. An E-DSS should be able to incorporate and apply any well-established and
available form of knowledge, but it should also be able to adapt and learn new pieces of
information which were partially or totally unknown at the time of its creation. In general,
it should be able to combine top-down (information-driven, imparted by teaching) and
bottom-up (data-driven, acquired by learning) strategies. Moreover, it must be observed
that the data and knowledge regarding a WWTP are often characterised by a significant
amount of uncertainty: measurements, whether collected using sensors or acquired
through laboratory tests, are often imprecise, uncertain or erroneous and do not allow
to identify the operating conditions precisely. Likewise, management policies are often
vague, do not always guarantee to reach the desired goal and are subject to exceptions.
Even if the supervision of a domains expert can be leveraged, the uncertainty can be
reduced, but it can rarely be eliminated.

Given such complex settings, it is almost impossible to meet all the requirements using a
single technology [Sottara, 2010]. Instead, most real applications of E-DSSs (e. g. [Cortes
et al., 2001]) integrate several AI, Data Mining (DM) and statistical methods such as
rules, case-based reasoning, ANNs [Shi and Qiao, 2010], Bayesian Networks (BNs) and
(environmental) ontologies [Ceccaroni et al., 2004]. A common practice to coordinate
the components is to consider each one a service provider, part of a Service Oriented
Architecture (SOA) (e. g. [Cortes et al., 2001; Sottara et al., 2009]). As an alternative,
provided that the software modules are autonomous, reactive, pro-active, and “social”,
decentralised and asynchronous agent-based architectures can be adopted.

While the choice between a synchronous and an asynchronous interaction model is a
fundamental design parameter, it affects only marginally the internal “business” logic of a
module. Unless thin, granular modules are used, each one incapsulating a very specific
function (like we did in [Sottara et al., 2009]), the problem of assembling knowledge-
intensive modules appears again at a more nested level. To deal with this class of issues,
we are developing an open source infrastructure supporting both hybrid services and
agents. This framework is built on top of the popular production rule engine Drools 1 which,
due to its rich set of functionalities, community support and friendly licensing model makes
it a good candidate for both academic and commercial applications. In particular, here we
will focus on the internal architecture and the design principles of hybrid, knowledge-based
modules which can be assembled to provide a service implementation or an agent’s
behaviour, specifically providing examples and a use case based on a real WWTP.

1http://www.jboss.org/drools/
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2 A KNOWLEDGE INTEGRATION PLATFORM

To manage a complex domain such as a WWTP, a non trivial amount of knowledge from
different sources is required. To facilitate its collection, sharing and reuse, it should be
acquired using appropriate techniques and tools, and expressed using standard formats.
A knowledge-based framework, then, will import that knowledge and will be able to execute
it against the data coming from external sources. In particular, we currently support and
advocate the following knowledge assets.

Ontologies An ontology is a formal description of some applicative domain. It defines
the concepts and entities involved, as well as the relations between them. It is founded
on Description Logics (DL) and expressed using languages defined by the Web Ontology
Language (OWL) 2 2 standard. Ontologies range from simple vocabularies to taxonomies
(e. g. [Ceccaroni et al., 2004]) to more complex forms, and can be authored using open
source tools such as Protege 3. In an Object Oriented (OO) and Java-driven setting,
capturing the concepts defined in an ontology with a class model is not trivial. We
have implemented a custom transformation framework which extends the approach
in [Meditskos and Bassiliades, 2008]. Due to the restrictions imposed by the language, it
generates interfaces rather than classes, as well as a reference implementation of those
interfaces. The same interfaces, however, have been designed to work with dynamic
proxies, emulating a loosely typed system with multiple inheritance, following an object-
-triple integration principle similar to the one presented in [Stevenson et al., 2011]. In
(Bragaglia et al. [2010]), it was also shown that the ontology can be used to generate
rules implementing a tableau algorithm to classify and recognise objects.

Predictive Models The term “predictive model” describes quantitative, data-driven
knowledge, usually resulting from a data mining process. The category includes both
predictors and classifiers, implemented using techniques such as neural networks, de-
cision trees, clustering, support vector machines, regression models, etc. A predictive
model can be trained using any DM tool (e. g. KNIME 4) or algorithm, encoded using the
XML-based interchange format PMML 5 and then imported into a Drools session, where it is
converted in a set of rules equivalent to the model itself, following the approach described
in [Sottara et al., 2011].

Workflows Workflows are a graphical notation for the description of Business Pro-
cesses (BPs). A BP is a model of the actions required to achieve a goal, defining the
interdependencies and the responsibilities for each action. At design time, workflows are
abstract specifications which can be exchanged and validated between domain experts;
at runtime, they can be used by a process engine to create, execute and monitor process
instances involving actual data and actors. Drools is tightly coupled with an open source
business process engine, jBPM 6, and supports the BPMN 2.0 standard 7, providing a
compliant graphical workflow editor.

Business Rules “Business Rules (BRs)” are production rules used to capture domain-
specific criteria. Unlike workflows – which focus on when and who should act – business
rules deal with whether and what should be done (consequence) under given conditions
(premise). They are usually authored and validated by domain experts and exported using

2http://www.w3.org/TR/owl2-overview/
3http://protege.stanford.edu
4http://www.knime.org/
5http://www.dmg.org/
6http://www.jboss.org/jbpm
7http://www.bpmn.org



L. Luccarini et al. / Ontologies, Rules, Workflow and Predictive Models: Knowledge Assets for an EDSS

standard interchange languages such as RuleML 8 or Rule Interchange Format (RIF) 9. As
a production rule engine, Drools supports business rules natively, either expressed in its
own native language or in the form of decision tables. The rules can be applied both to
raw sensorial data and inferred data; moreover, they can be be used to control external
systems, closing control loops.

3 USE CASE

The platform we are working on allows to create hybrid knowledge bases, where ontologies
and predictive models can be used for qualitative and quantitative inference, workflows
control and orchestrate the execution of processes and business rules define policies and
managements actions; in the background, additional production rules can be added to
tune and extend the system as well as fixing any integration issue between the different
components; finally, the engine has built-in complex event processing capabilities, so it is
suitable to to build online applications.

To discuss the potentialities of such an integrated system, we introduce a simple but
concrete scenario. According to the national legislation, waste water chemical parameters
(e. g. Nitrogen (N) and Phosphorus (P ) compound concentrations, pondus Hydrogenium
(pH), etc.) must fall within some fixed limits, which may also depend on the area where
the water is collected, treated and then discharged. Plant operators must ensure that the
limits are respected and are subject to independent, third-party verification. To ensure
that the plants are operating effectively, protecting the environment while avoiding legal
controversies, several solutions can be applied: a continuous, online monitoring of the
relevant parameters using “hardware” or “software” sensors is recommended, provided
that the reliability of such devices can be guaranteed. Nevertheless, not all plants are
adequately equipped, so an independent sampling and analysis process, performed by a
certified laboratory, is planned so that a minimum number of controls is performed each
year.

The frequency, number and type of controls which have to be performed is partly de-
termined by the legal requirements and the partly by the policies of the plant manager.
The procedure itself can be outlined as follows: given a plant and its layout, a number of
potential collection points is defined. For each collection point, a specific set of chemical
analysis has to be performed, set which depends on the plant type, size and location. For
each analysis, the spot value has to be compared against the limits set by the law: any
violation or missing value has to be recorded in dedicated registries for further reference.
Since checks have to be carried out a minimum number of times each year, a dataset is
eventually recorded for each plant which can be mined for further information.

Procedures like this, which are usually delegated to specialised technicians, can be almost
completely automated, since the only part requiring a human is the collection and analysis
of the samples (and even then, only assuming that the adequate probes are not available
on a plant). The decision on which samples must be collected, which analysis have to
be performed on each one and the interpretation of the results can be executed by an
E-DSS endowed with the necessary knowledge. In the remainder of this section, we will
describe our proposed representation, based on a hybrid model. In particular, we will refer
to the municipal WWTP of Trebbo di Reno (Bologna, Italy), a continuous-flow 3600PE plant
managed by Hera S.p.A.

8http://ruleml.org/
9http://www.w3.org/2005/rules/wiki/RIF_Working_Group
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Figure 1: Use case’s ontology fragment.

NitrificationTank = Tank u dedicatedTo some Nitrification.
NitrificationCP = CollectionPoint u locatedIn some NitrificationTank.
Tank(tank3 ).
CollectionPoint(cp5 ).
tank3 @ dedicatedTo some Nitrification.
locatedIn (cp5 , tank3 ).

Listing 1: DL-based collection point definition and recognition.

Use Case Modelling We have developed the core of a WWTP ontology: unlike other ex-
isting ontologies [Ceccaroni et al., 2004], it is mainly focused on the structural components,
the data collection process and the control and management aspects. Figure 1 shows
a fragment of the current version: Probes 10 locatedIn Tanks perform online Analysis on
Samples, in order to acquire the Measurements of Quantities of one or more Substances. For
example, pH and concentrations of Nitrates (NO3 −Ns) would fall under these categories.

More specifically, Tanks are dedicatedTo ProcessPhases such as Gritting, Nitrification
or Sedimentation, which allows to provide definitions of dedicated tanks. Likewise,
CollectionPoints are locatedIn Tanks, and so they can be classified against specific
definitions. In this way, it is sufficient to provide factual and structural information regarding
the layout of a plant, the processes and the position of the collection points: a semantic rea-
soner, then, will be able to characterise the nature of the tanks and their collection points
automatically, as well as checking the consistency of the provided data. For instance, the
statements of DL in Listing 1 allows to recognise cp5 as a NitrificationCollectionPoint
(located in a NitrificationTank).

One of the artefacts obtained processing the ontology is a Java class model reflecting the
concepts, relations and individuals defined in the ontology. So, we created an semantic
description of the Trebbo di Reno plant, importing the concepts from the general WWTP
plant, and transformed it into an OO model. This description is static, since it only contains
the structural layout of the plant, and can be safely processed offline. The resulting model,
instead, can be used to create and populate fact instances from the dynamic (raw) data
collected online from the plant: these object can then trigger (production) rules written
using patterns derived from the same concepts in the ontology.

The knowledge on the available CollectionPoints is necessary to determine which Samples
should be collected on a plant routine control and which Analysis should be performed.
The list of Samples is created using rules such as the one in Listing 2. Given a plant in
a non-sensitive area, one rule is required for each collection point type and plant size.

10Concepts, relations and constructs taken from the ontology are formatted accordingly.
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rule "Determine Required Analysis - NitrificationCP"
ruleflow-group "selectAnalysis"
when

$plant: Plant( $lines: hasLine, critical == false, $pe:
populationEquivalent > 2000 && <= 10000 )

$line: PlantLine( this memberOf $lines, $tanks: hasTank )
$tank: Tank( this memberOf $tanks, $collectionPoints:
hasCollectionPoint )

$acp: NitrificationCollectionPoint( this memberOf
$collectionPoints )

then
Sample s = factory.createSampleImpl ();
s.addIsCollectedFrom($acp);
// for each required analysis
Analysis ax = factory.createAnalysisImpl ();
// configure Analysis
s.addRequiredAnalysis(ax);
// eventually add to global
requiredSamples.add(s);

Listing 2: Required sample listing.

Figure 2: The process for this use case.

The actual rules are not compiled manually, but defined using Rule Templates (RTs) and
Decision Tables (DTs): in fact, these rules are parametric in the populationEquivalent
range and required Analysis. Condition patterns (size and collection point type) and
actions (analysis to be scheduled) are determined from the values in the table cells
and used to instantiate a rule template. Drools, through its guided editor, conveniently
allows to present a table where only the relevant columns are exposed, namely two
columns for the size limits, one column to select the CollectionPoint type and one column
to include/exclude each possible Analysis. For example, our case study plant has 12
potential collection points, 6 of which require 1 to 5 different laboratory measurements
each, including Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD),
Total Suspended Solids (TSS) and N compounds concentrations.

The rules in this format are not plant-specific, so the same criteria will be applied to
all plants managed by the same company. The selection of the Samples and Analysis,
however, is only the first step of the monitoring procedure. We have modelled the whole
process using a workflow, shown in Figure 2. The BP, triggered by an event (usually
scheduled on a regular basis), requires that, after determining the required Samples, a
human operator collects and performs the necessary Analysis.

The process engine, integrated with the rule engine, keeps track of the process state in a
persistent way, and propagates the data between the various tasks. The manual activities
– collection and analysis – are modelled as BPMN 2.0 Human Tasks and managed by
a Human Task server, which will call back the process engine when each activity has
been completed (or aborted for some reason), updating the process progression and the
appropriate data structures. Notice that, among their other advantages, human tasks
allow to trace the identity of the person who executed the task.
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rule "(In)Validate [NO3] values"
ruleflow-group "validate"
when

$a: Analysis( $res: results )
$x: Measurement( this memberOf $res, ofQuantity isA Concentration,

ofSubstance isA NO3Substance, $val: hasAmount.hasValue > 20,
hasMU == "mg/L" )

then
invalidMeasures.add($x);

end

Listing 3: Lab analysis validation.

For each resulting Analysis, the resulting value is eventually validated against the limits
imposed by the law. As previously, we use rules (see for example Listing 3) derived from
a DT where the threshold values can be conveniently set for each of the 22 legally relevant
parameters. Whenever a measure is not compliant, a call will be issued to a dedicated
service, managing a registry (database).

Eventually, the process terminates calculating a summary score, namely the ratios of
completed (w. r. t. required) and valid (w. r. t. completed) analysis. For various reasons,
it may not always be possible to perform all the necessary tests, so in practice the two
indicators have values lower than 1. In order to improve the overall quality, it is possible to
plugin soft sensors or estimators implemented using predictive models such as neural
networks, regression models or support vector machines, i. e. any model covered by the
Predictive Model Markup Language (PMML) standard. In particular, regression models
would be used to estimate the missing values and classification models could be used
directly to estimate their compliance, without trying to assess the exact value. While we
think that this is a promising approach, at the moment we can not confirm its validity on
the test plant since the dataset we have collected to this date are too small to draw any
conclusion with a sufficient level of confidence.

4 CONCLUSIONS

We claim that the use of an integrated, knowledge-oriented platform is a convenient
option for the development of a hybrid Environmental Decision Support System (E-DSS).
From a cognitive perspective, we have shown that even standard management use cases
can benefit from an appropriate modelling. A semi-declarative approach facilitates the
development and increases the maintainability and robustness of an E-DSS, allowing to
bring the domain experts into its development process. The use of standard languages
allows to reuse and exchange knowledge both within and between organisations: in
particular, it allows to import pre-existing knowledge and, when appropriate, allows to
use knowledge elicitation techniques and authoring tools. Such knowledge can then
easily be imported in the runtime execution environment, where the engine will apply the
knowledge to the data it receives from external sources. Thus, a minor effort is required
on the integration platform, saving time and resources to improve the business logic. In
fact, building a Hybrid System (HS) using components of different nature raises many
design and integration issues, to the point that the framework may become more complex
and critical than its core components. Letting the middleware take care of this issue,
instead, decouples the domain models from the runtime architecture. The platform makes
it possible to map the various pieces of knowledge onto a unified data model, which can
be processed by the hybrid engine.
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The main limitation is that, to this date, the platform does not provide a complete coverage
of the existing knowledge representation standards, so it may impose some constraints
on the cognitive models it can support. Future works, then, will focus on increasing the
coverage and robustness, allowing for more complex use cases. Moreover, it will be
necessary to collect additional data from the plant under examination, in order to build
the more sophisticated statistical and predictive models which would be useful to better
estimate and diagnose its operating conditions.
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