
International Environmental Modelling and Software Society (iEMSs)
2010 International Congress on Environmental Modelling and Software

Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada
David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.)

http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings

DEM uncertainty and hazard analysis using a
geophysical flow model

E.R. Stefanescu a, M. Bursikb, K. Dalbey a, M. Jones c, A.K. Patraa and E.B. Pitmana

aDepartment of Mechanical & Aerospace Engineering, University at Buffalo, SUNY, Buffalo,NY
14260 , (ers32@buffalo.edu, abani@buffalo.edu)

bDept. of Geology, University at Buffalo, SUNY, Buffalo,NY 14260 , (mib@buffalo.edu)
cCenter for Computational Research,University at Buffalo, SUNY, Buffalo,NY 14260

Abstract: In this paper we introduce a careful procedure for analyzing the impact of error and
uncertainty in model inputs in volcanic mass flow hazard analysis. In particular we focus on
uncertainty in elevation maps that are crucial to flow simulations. Our early results establish the
soundness of the approach and the usefulness of the methodology for constructing probabilistic
hazard maps.
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1 INTRODUCTION

The aim of this study is to investigate the effect of Digital Elevation Model (DEM) uncertainty
on hazard analysis using a geophysical flow model. In recent work [Dalbey et al., 2006; Dalbey,
2009], we have shown that input (e.g. volume) and parameter (e.g. basal friction) uncertainty
propagation through a geophysical mass flow model can be used for analysis of hazards from
such flows. We follow up on that work here by exploring the impact of uncertainty in DEM on the
hazard analysis application. The DEM, as the name implies, is a model of the elevation surface.
However, the DEM is often not treated as a model, but is accepted as a “true” representation of the
earth’s surface [Wechsler and Kroll, 2006]. The quality of a DEM is dependent upon a number of
factors, including the methods of data acquisition, the nature of the input data, and the methods
employed in generating the DEMs [Shearer, 1990].

Error is quantifiable, and is defined as the difference between reality and our representation of the
reality. Measurement of error in DEM’s is often impossible because the true value for every geo-
graphic feature or phenomenon represented in a dataset is rarely determinable [Goodchild et al.,
1994; Hunter et al., 1995]. Since the reality is unknown, then the error can be characterized by
methods commonly used to treat epistemic uncertainty. In a geophysical flow model, the uncer-
tainty is the measure of the sensitivity of the analysis result to variations of the parameters involved
in it. Naive approaches to treating DEM uncertainty can quickly lead to the use of thousands if
not millions of random variables, leading to a computationally infeasible problem. We advocate
instead a procedure introduced by [Goodchild et al., 1994; Hunter et al., 1995] that allows us to
provide a reasonable representation of DEM uncertainty using only one or two random variables.

1.1 Previous work

A method use by [Weng, 2002] in quantification of the uncertainty of DEMs was to create various
DEMs using different interpolation methods and to examine the RMSE from the source map,
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sampling and measurement error, and interpolation process. It was concluded that RMSE can
be used as a general indicator of DEM uncertainty. [Wechsler and Kroll, 2006] developed four
different methods for representing the spatial dependence of error through random fields to assess
the effect on topographic parameters of the DEM uncertainty. The study shows that uncertainty
in the DEM is manifested at higher elevations in local steeper slopes on the slope and elevation
maps. Lower valley areas are more sensitive to error in the data in the upslope contributing
area map since error in lower areas incorporates all the upslope area error. One key feature of
spatial data is the autocorrelation of observations in space. Generally, spatial autocorrelation
refers to the correlation between the same attribute at two locations. Observations in close spatial
proximity tend to be more similar than are observations at greater separation. Errors in spatial data
(such as incorrect elevation values assigned to a point) are spatially autocorrelated. The effect of
correlated DEM error has been investigated in a growing literature [Fisher, 1991; Goodchild et al.,
1992]. It was determined that not only is error spatially variable throughout a DEM, but within
the elevation model the error value of an individual grid cell is related to the error in neighboring
cells. Unfortunately, DEM providers do not furnish information regarding the spatial dependence
or spatial relationship of errors.

Stochastic modeling uses stochastic conditional simulation to generate multiple equally likely
representations of an actual terrain surface. [Hunter and Goodchild, 1997; Ehlschlaeger and
Shortridge, 1996] compute a normal distribution of maps or realizations to reproduce the spatial
autocorrelation encountered in the original error surface, filtered using a Gaussian convolution
filter, with kernel sizes derived from autocorrelation analysis of the original error surfaces. The
technique does not ensure that the “real” map is generated from the process; however, it does
provide a bound within which we can state the true map lies. Various researchers have applied the
stochastic technique to evaluate uncertainty in DEM data. [Ehlschlaeger and Shortridge, 1996]
stochastically simulated error in a DEM to evaluate the impact of DEM uncertainty on a least-
cost-path application. [Hunter and Goodchild, 1997] investigated the effect of simulated changes
in elevation at different levels of spatial autocorrelation on slope and aspect calculations. [Hebeler
and Purves, 2008] produced uncertainty surfaces to show the impact of DEM uncertainty on an
ice sheet model. [Darnell et al., 2008] developed a fuzzy framework to examine the probable and
possible uncertainties in classifying landslide hazard.

1.2 TITAN2D model

The TITAN2D code used in this effort conducts numerical simulations of flows on digital rep-
resentations of the natural terrain. It is based on a depth-averaged model for an incompressible
granular material, governed by Coulomb-type friction interactions [Savage and Hutter, 1989].
The governing equations are obtained by applying conservation laws to the incompressible con-
tinuum, providing appropriate constitutive modeling assumptions, and then taking advantage of
the shallowness of the flows (flows are much longer and wider than they are deep) to obtain sim-
pler depth-averaged representations [Patra et al., 2005]. The motion of the material is considered
to be gravitationally driven and resisted by both internal and bed friction. The stress boundary
conditions are: no stress at the upper free-surface and a Coulomb-like friction law imposed at the
interface between the material and the basal surface. Note that the primary factor driving the flow
is the component of gravity along the surface which depends on a local slope computed from the
elevation data. Hence, the criticality of the DEM to the flow computations. The resulting hyper-
bolic system of equations is solved using a finite-volume scheme with a second-order Godunov
solver. Although many real geophysical flows — such as debris flows — are fluidized, in this study
we deal only with granular material that has not been fluidized, such as dome-collapse block and
ash flows or rock avalanches initiated by slope instability. The program runs in parallel, using
the message passing interface standard (MPI) to allow communication between multiple proces-
sors, increasing computational power, decreasing computational time and allowing use of large
datasets. The algorithm uses local adaptive mesh refinement for shock capturing, and dynamic
load balancing for the efficient use of computational resources. Topographic data are included
in the simulation by using a preprocessing routine in which digital elevation data are imported.
The DEM file containing (X,Y, Z) data (typically UTM easting, UTM northing and elevation in
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meters) must be properly configured to operate with TITAN2D through the use of a header.

2 STOCHASTIC SIMULATION

In modeling the propagation of uncertainty in a geophysical flow model, the stochastic model
proposed by Ehlschlaeger and Shortridge [1996] was performed. The model is based on the ob-
servation that if an error field can be defined by the available quantitative descriptors of error,
then its impact can be examined by simulating one or more random error fields consistent with
the available descriptors. Each simulated field is a realization of the error model and the spatially
autocorrelated error can be viewed as a random field. Two 30-m resolution DEMs derived from
independent techniques were used. An Shuttle Radar Topography Mission (SRTM) dataset was
considered to be the “true” elevation, while a second National Elevation Dataset (NED) dataset
was used in creating the error model. To find the error in a given DEM dataset the elevation
given by the DEM may be subtracted from the “true” elevation at a given location. Random fields
are then created based on the stochastic properties of the difference dataset such that they are
representations of a potential realization of the errors in the map. To choose the best descrip-
tive parameters of a random field (the minimum distance of spatial independence, the correlated
distance decay exponent and the filter parameter), a correlogram comparison of the random field
with the error model was performed. Sixty-four (64) realizations were generated with a Gaussian
distribution matching the mean and standard deviation observed in the difference map represented
by [Ehlschlaeger and Shortridge, 1996]:

R(u) = m(u) +m(m(T )) + (m(s2(T )) · ε) · Z(u) (1)

where R(u) is a realization of a generalized elevation dataset m(u), m(u) in this case is the
SRTM dataset, T is a group of sets of spatially uncorrelated sample points, ε is a random variable
with mean 0.0 and variance 1.0, and Z(u) is the random field which captures the autocorrelation
between points. The mean and the standard deviation are determined from randomly drawn,
spatially independent points scattered across the surface.

The straightforward way to account for uncertain inputs and stochastic forcing is a Monte Carlo
approach — run many simulations and ‘average’ the results in some fashion. If simulations are
expensive to run, this approach is not feasible. To circumvent this difficulty, the statistics com-
munity has developed the idea of an emulator, or “fast surrogate”, computer model. In essence,
the emulator is a regression surface based on a representative sample of simulations at selected
inputs, accompanied by statistical error bounds. Equipped with this surface, output values at new
(untested) input values need not be run. Instead output results can be determined by evaluating
the emulator. There are indeed many methods – kriging, metamodels, support vector machines,
etc., by which such surrogates may be constructed and there exists a body of literature on the
topic [Simpson et al., 2001; Clarke et al., 2005]. One often-used emulator is the GAuSsian Pro-
cess (GASP) emulator, which assumes the regression has the form of a trend plus a Gaussian
[Kennedy and O’Hagan, 2001; Conti and O’Hagan, 2007; O’Hagan, 2006; Bayarri et al., 2010].
To construct a GASP emulator, the covariance structure of the Gaussian must be assumed and
parameters determined by Bayesian or partially Bayesian methodology. A fully Bayesian deter-
mination of the emulator can be costly, especially if the input data is high-dimensional. Here
we use the Bayes Linear method (BLM) [Goldstein, 2007] to construct an emulator. Given prior
beliefs (B) of mean and variance, the BLM updates these beliefs conditioned on the data (D).
1 Because only the first two moments of a distribution are determined, the BLM is exact only
for Gaussian distributions. As an emulator construction, the BLM update is simplier than a full
GASP construction, but the resulting emulator is comparable. Given the prior expectation E[B]
and variance var(B), the BLM updates are

ED(B) = E[B] + cov(B,D)(var(D))−1[D − E[D]] (2)
varD(B) = var(B)− cov(B,D)(var(D))−1cov(D,B)

1Note that “data” here can refer to the output of expensive physics based simulators.
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These update formulae can be derived by minimizing the mean square error (B−aTD)2 between
B and some linear combination of the data. Thus the BLM update can be viewed as the projection
of the set of prior beliefs onto the span of the data.

3 HAZARD MAP CONSTRUCTION

The next step of the analysis is to generate a functional representation of the hazard at a location.
We describe the process of computing a hazard map due to a geophysical flow with uncertain
model inputs introduced by Dalbey et al. [2010]; Dalbey [2009]. A two-level construction of an
ensemble of emulators is used to include a separation of uncertain inputs and geographic coor-
dinates. The process starts by identifying the model inputs whose uncertainties will drive the
process. In our case, the uncertain flow inputs we use are input volume, starting location, basal
and internal friction and finally the DEM. For the eight-dimensional parameter input space, a
Latin Hypercube Sampling is performed to determine parameter values at which simulations are
to be run. Simulation outputs at each of these parameter values are stored at perhaps (O(106))
grid points. This dataset is downsampled to tens of thousands of grid locations. The variable of
interest for our application is the single field of maximum flow depth over time, at each of the
downsampled gridpoints. Tesselations of the geographic coordinate space and the parameter in-
put space are constructed (we use Delaunay triangulation). At a designated location, x∗, of the
input plus coordinate space at which the hazard is to be computed, the covering simplex S∗

x of
the parameter space is identified, and all nodes of that simplex are enumerated, as are all nodes
within a neighborhood (two hops in the tesselation) of the covering nodes. For each such 2-hop
node, we tesselate in the geometric coordinates and evaluate all emulators constructed over these
nodes (standard BLM emulators). We average these coordinate space emulators to (the coordinate
components of) x∗ by barycentric weighting; notice there will be emulators for each parameter
input sample point. Now in the input parameter space, construct a tessellation of the 2-hop nodes
and average the emulators to x∗ by barycentric weighting of the fine scale emulator. The emulator
is now readily and quickly evaluated (at the cost of a few FLOPS) for each evaluation. The hazard
map construction can now proceed by treating the emulator as a surrogate for the simulator in the
classical Monte Carlo procedure. For any point in the domain now we can exercise the emulator
to get potential flows and hence exceedance probabilities.

4 APPLICATION

4.1 Study site

The study area is Mammoth Mountain — a large, geologically young, composite dome volcano
located on the southwestern rim of Long Valley Caldera, California [Bailey, 1989]. There are
many active hazards issues for Mammoth Mountain, including snow avalanches, rock avalanches
and debris flows. In addition, it is intersected by the Mono-Inyo Craters volcanic chain, which
is the most active volcanic region in the southwestern U.S. If Mono-Inyo type activity occurs on
Mammoth Mountain, then domes may form. These new domes would be growing atop a steep
edifice, and therefore could become gravitationally unstable. Given that block and ash flows
occurred at Mammoth Mountain during its older dome growth stage, there is reason to believe
that renewed dome formation would result in block and ash flow activity. If this is so, then parts
of Mammoth Lakes, CA, are at risk from block and ash flows. Our previous work on Mammoth
Mountain (Stefanescu et al., submitted) was the the testing of the hypothesis that different DEMs
result in different model outputs. One of the most important conclusions was that for moderate
and smaller scale flows it is important to capture the terrain’s features in order to get an accurate
footprint of the flow.

4.2 DEMs and Uncertainty in DEMs

A rectangular area of approximative 42 kilometers2 was defined within the SRTM and NED DEMs
(Fig. 1 a). The correlogram for the data was calculated to determine the range of spatial depen-
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dence of the elevation points using Grass GIS functions. We found that the spatial dependence
persisted to a distance of 2000 meters. To determine the PDF for the stochastic simulation, 91
sets of spot locations were selected from the area covered, each set containing 91 points, all sepa-
rated by more than 2000 meters. For each set, PDF statistics (mean and standard deviation) were
derived (Fig. 1 b). An important step in the analysis is to determine the random field parameters,
which required the development of many combinations of spatial dependence parameters. After
testing more than 600 random field parameter, the combination which resulted in the smallest dif-
ference between the error model correlogram and the random field is: the minimum distance of
spatial independence, D = 2100; the distance decay, E = 0.7, and the filter parameter, F = 350.
A total of 64 equally probable potential elevation surfaces of the area having a 30-m resolution
were generated.

4.3 Parameters, Uncertainty, and Probabilistic Hazard Maps

The central concept guiding the creation of hazard maps for volcanic eruptions, as well as earth-
quakes, floods, etc., is that volcanoes tend to behave in the future in a manner that is similar to
how they have behaved in the past. Thus, the geological record can be used by volcanologists
to estimate quantities that parameterize past flows, and even probability distributions for these
parameters [Dalbey et al., 2006; Dalbey, 2009]. These parameter values can then be used to guide
modeling of potential future events. If the input values for a future event of interest were known
exactly, then a hazard map could be generated from a single simulation evaluated at those input
values. Since we lack knowledge of the future, it is necessary to examine flow behavior over a
range of inputs. Thus we must choose which inputs to consider uncertain and their appropriate
ranges.

The motivation for creating realizations of the DEM was to be able to use them along with other
uncertain parameters as uncertain inputs for a hazard map. One of our assumptions is that the
DEM contributes a significant proportion of the variance in simulated flow, hence hazard map
output. For sampling the input space, a Latin Hypercube Sampling (LHS) was implemented. The
uncertain inputs of the hazard map in this case were:

1. The DEM, which is defined by two random variable with mean 0.0 and variance 1.0

2. The starting position of the initial unstable material, which is uniformly distributed in a
circle of radius 400 m, centered at (322058,4167488)

3. The volume, which is uniformly distributed between a minimum event of 105m3 and a
maximum event of 109m3.

4. Internal friction angle, with values in the range [20− 25] degrees

5. Basal friction angle, which was considered to have a uniform distribution between [15−20]
degrees where the elevelation is greater than 2750m, and below this [20 − 25]. This is the
elevation of the tree line; we are assuming that trees and greater degree of soil development
provide greater flow dissipation.

The parameter values listed above were used to guide the LHS sampling of the input space of po-
tential block and ash flows in the future. Outputs from TITAN2D model runs at the sampled input
values were then combined and analyzed to produce a probabalistic hazard map given uncertainty
in flow volume, topography, and dissipation.

5 DISCUSSION AND CONCLUSIONS

In our previous work [Stefanescu et al., 2010], we investigated the effects of DEMs on the out-
put of TITAN2D by comparing the output using different DEMs to that obtained with a “true”
representation of the terrain, which is considered to be that obtained by using TOPSAR-5m data.



Stefanescu et al. / DEM uncertainty propagation

We found that DEMs with different resolutions and sources generated different outputs which led
to different flow maps (Fig. 2 (a), (b)). A next step in studying the effect of DEM on the flow
depth output is to create multiple realizations of a particular DEM and develop a hazard map
which has as uncertain input parameters the terrain realizations, volume, location and basal fric-
tion. Thirty-two (32) potential DEM realizations were created by adding to the SRTM 30m DEM
the difference between the two DEMs multiplied by a random variable, ε, with a mean of 0.0 and
a variance of 1.0. The realizations do not take into account the spatial autocorrelative effect be-
tween points, but they do assume that the two DEMs are consistent; there is a measurement error
in both DEMs where it was difficult to collect the raw data points, or where the slope angle was
steep. The distributions of uncertainty for all the input parameters were propagated through the
simulator to produce a map of the probability that a hazard criterion – in our case a flow depth of
0.2 m – can be met (Fig. 3).

We have introduced here a systematic procedure to use uncertainty in model inputs (notably the
DEM) and parameters to drive the analysis of hazards from geophysical granular flows such as
ignimbrites, block and ash flows or avalanches. As we had previously found in studying the effects
of input parameter uncertainty in only the physical flow parameters (such as volume and friction
angle) [Dalbey et al., 2008], error in flow property output uncertainty is concentrated at the flow
margins. This is somewhat surprising in that DEM uncertainty is concentrated by local errors
in terrain surfaces. The result may therefore indicate that flow thickness plays a greater role in
concentrating uncertainty, which is preferentially concentrated at flow margins where the material
has thinned considerably.
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(a) (b)

Figure 1: (a) The SRTM 30m DEM terrain surface (Easting, Northing and elevation coordinates).
(b) Magnitude of the error model as measured by the difference between the two DEMs.
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(a) (b)

Figure 2: a) and b) Examples of differences in flow depth calculations for realizations of the same
low-volume flow using different DEMs. a) TOPSAR 5m DEM, b) NED 30m DEM

(a) (b)

Figure 3: a) Probability that a flow will exceed 0.2 m in depth as a function of position on Mam-
moth Mountain, CA, given the uncertainties in DEM and input parameters. b) Standard deviation
in the estimate that the flow will exceed 0.2 m in depth. Estimation error is concentrated at flow
margins.
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