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Abstract: Environmental systems often involve nonlinear models, continuous as well discrete decisions, and
multiple objectives. Uncertainties are inherent in these models increasing the complexity of decision making
further. This paper presents an efficient algorithmic framework for environmental decision making for large
scale systems involving multiple objectives in the face of uncertainties.

Keywords: multi-objective, combinatorial, uncertainty, optimization, environmental modeling

1 INTRODUCTION

Simulation models and other design tools allow
engineers to design, simulate, and optimize sys-
tems. However, there is a critical need to incor-
porate green engineering into the design of these
systems. This calls for extending the breadth of
the design process. However, this integration poses
challenging problem of discrete and continuous de-
cisions, nonlinear models, and uncertainties. Fur-
ther, the goals in terms of profitability are relatively
easy to define, and researchers in academics and in-
dustries have used simulators and modeling tools
to achieve profitability where environmental con-
siderations are considered as definable constraints.
However, ”complete ecological considerations” to
be included as environmental impact objectives is
a formidable task. Thus, efficient multi-objective
optimization methods are necessary to handle the
conflicting and different objectives involved in the
problem of greener by design. Multi-objective
optimization approach is particularly valuable in
the context of pollution prevention, waste manage-
ment,life cycle analysis, and sustainability as there
are a large number of desirable and important ob-
jectives which are not easily translated into dollars.
Extending the envelope from simulation of a plant
to management and planning towards sustainability,
and broadening the scope to include multiple objec-
tives other than profitability, increase uncertainties.

∗The framework described here is developed over the years with
the algorithmic contributions from my graduate students with the
funding from the National Science Foundation and the Environ-
mental Protection Agency.

Further, the decision making then involves discrete
decisions related to selection of alternatives, as well
as continuous decisions that defines the operations
and design parameters (Diwekar [2003a]). Thus, at
the crux of this decision making are efficient algo-
rithms, methods, and tools for multi-objective op-
timization and uncertainty analysis. This algorith-
mic framework is described in this paper. Two real
world case studies illustrate the promise of such a
framework.

2 ALGORITHMIC FRAMEWORK

The algorithmic framework consists of five calcu-
lation levels as shown in the Figure 1. The basis
of this framework is numerical optimization algo-
rithms (Diwekar [2003b]) for selecting discrete and
continuous decisions in the face of multiple objec-
tives, and probabilistic uncertainty analysis to ac-
count for uncertainties and variabilities in objec-
tives, constraints, and parameters.

Level 1, is the inner most level and corresponds to
models for simulation. This level defines all possi-
ble alternatives. Currently, for the case study pre-
sented in this paper, ASPEN PlusTM (AspenTech
[2004]) is used for process modeling.

Level 2, Sampling loop: The diverse nature of un-
certainty, such as estimation errors and process vari-
ations, can be specified in terms of probability dis-
tributions. The type of distribution chosen for an
uncertain variable reflects the amount of informa-
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Figure 1: The Algorithmic Framework

tion that is available. For example, the uniform and
log-uniform distributions represent an equal likeli-
hood of a value lying anywhere within a specified
range, on either a linear or logarithmic scale, re-
spectively. Further, a normal (Gaussian) distribu-
tion reflects a symmetric but varying probability of
a parameter value being above or below the mean
value. In contrast, lognormal and some triangular
distributions are skewed such that there is a higher
probability of values lying on one side of the me-
dian than the other. A beta distribution provides a
wide range of shapes and is a very flexible means
of representing variability over a fixed range. Mod-
ified forms of these distributions, uniform* and log-
uniform*, allow several intervals of the range to be
distinguished. Finally, in some special cases, user-
specified distributions can be used to represent any
arbitrary characterization of uncertainty, including
chance distribution (i.e., fixed probabilities of dis-
crete values).

It is easier to guess the upper and lower bounds of
uncertain variables and hence uniform distribution
provides the first step towards uncertainty quantifi-
cation. If one can identify the most likely value then
traingular distributions can be used (Diwekar et al.
[1997]). Recently, Kim and Diwekar [2002a] used
extensive data obtained from the DECHEMA data-
bank and obtained realistic quantification of uncer-
tainties related to UNIFAC parameters for the chem-
ical synthesis problem reported in the case study

section.

Once probability distributions are assigned to the
uncertain parameters, the next step is to perform the
sampling operation. One of the most widely used
techniques for sampling from a probability distribu-
tion is the Monte Carlo sampling (MCS) technique,
which is based on a pseudo-random generator to ap-
proximate a uniform distribution (i.e., having equal
probability in the range from 0 to 1). The specific
values for each input variable are selected by in-
verse transformation over the cumulative probabil-
ity distribution. A Monte Carlo sampling technique
also has the important property that the successive
points in the sample are independent. Nevertheless,
in most applications, the actual relationship between
successive points in a sample has no physical signif-
icance; hence, the randomness/independence for ap-
proximating a uniform distribution is not critical. In
such cases, uniformity properties plays a more criti-
cal role in sampling, as a result, constrained or strat-
ified sampling techniques are more appealing. Latin
hypercube sampling (LHS) (McKay et al. [1979]) is
one form of stratified sampling that can yield more
precise estimates of the distribution function. The
main drawback of LHS stratification scheme is that,
it is uniform in one dimension and does not pro-
vide uniformity properties in k-dimensions. Sam-
pling based on cubature techniques or collocation
techniques face similar drawback. These sampling
techniques perform better for lower dimensional un-
certainties. Therefore, many of these sampling tech-
niques use correlations to transform the integral into
one or two dimensions.

Efficient sampling techniques (Hammersley se-
quence sampling, HSS and Latin Hypercube Ham-
mersley Sampling, LHHS) based on Hammersley
points were developed by my group (Kalagnanam
and Diwekar [1997],Wang et al. [2004]). HSS uses
an optimal design scheme for placing the n points on
a k-dimensional hypercube. This scheme ensures
that the sample set is more representative of the
population, showing uniformity properties of ran-
dom variables in multi-dimensions, unlike Monte
Carlo, LHS, and its variant, the Median Latin hyper-
cube sampling technique. Figure 2 shows samples
generated for two uniform uncertain (random vari-
ables) using MCS and HSS. It has been found that
the HSS technique is at least 3 to 100 times faster
than LHS and Monte Carlo techniques and hence
is a preferred technique for uncertainty analysis, as
well as optimization under uncertainty, and is used
in this framework.

Level 3, Continuous optimizer: This step involves
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Figure 2: Samples of MCS and HSS for two uni-
formly distributed random variables

continuous decisions like design and operating con-
ditions for a process. Derivative based quasi-
Newton methods, where the gradient (i.e., Jaco-
bian) is approximated based on differences in the
x and f(x) obtained from previous iterations, are
widely used in process optimization. Among the
quasi-Newton based methods, the SQP (successive
quadratic programming) method is used for this
framework because it requires far fewer function
and gradient evaluations than other methods for
highly nonlinear constrained optimization, and it
does not need feasible points at intermediate iter-
ations. Both of these properties make SQP one of
the most promising techniques for problems dealing
with nonlinear constraint optimization, like process
simulations.

Level 4, Discrete optimizer: This involves dealing
with discrete decisions such as chemical and pro-
cess structural alternatives. This is the most dif-
ficult optimization step. New algorithms are de-
signed by improving efficiency in two steps: (1)
improving the discrete optimization algorithm by
using quasi-random numbers like the Hammersley
Sequence Sampling, and (2) by providing efficient
interaction between the discrete optimization and
the sampling technique for efficient stochastic op-
timization. These new algorithms are found to be
99 % more efficient than the traditional algorithms.
For details of these algorithms, please see Kim and
Diwekar [2002a]; Xu and Diwekar [2005]. Figure
2 shows the stepwise improvement in genetic algo-
rithm, namely, (1) ESGA, and (2) HSGA for a sim-
ple problem.

Level 5, Multi-Objective Programming,
(MOP):This represents the outermost loop in Figure
1.

A generalized Multi-objective optimization (or
Multi-objective Programming) problem can be for-
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Figure 3: Stepwise improvement in genetic algo-
rithms.

mulated as follows:

min Z = Zi, i = 1, . . . , p, p ≥ 2, (1)

s.t. h(x, y) = 0,

g(x, y) ≤ 0,

wherex and y are continuous and discrete deci-
sion variables, andp is the number of objective
functions. The functionsh(x, y) and g(x, y) rep-
resent equality and inequality constraints, respec-
tively. There are a large array of analytical tech-
niques to solve this MOP problem; however, the
MOP methods are generally divided into two ba-
sic types: preference-based methods and generating
methods. Preference-based methods like goal pro-
gramming attempt to quantify the decision-maker’s
preference, and with this information, the solution
that best satisfies the decision-makers’s preference
is then identified (Diwekar [2003b]). As is well
known, mathematics cannot isolate a unique opti-
mum when there are multiple competing objectives.
Mathematics can at most aid designers to eliminate
design alternatives dominated by others, leaving a
number of alternatives in what is called the Pareto
set. Generating methods, such as the weighting
method and the constraint method, have been devel-
oped to find the exact Pareto set or an approxima-
tion of it. For each of these designs, it is impossi-
ble to improve one objective without sacrificing the
value of another relative to some other design alter-
native in the set. From among the dominating so-
lutions, it is then a value judgment by the customer
to select which design is the most appropriate. At
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SOOP

issue is an effective means to find the members of
the Pareto set for a design problem, especially when
there are more than two or three objectives; the anal-
ysis per design requires significant computations to
complete, and there are an almost uncountable num-
ber of design alternatives. A pure algorithmic ap-
proach to solving is to select one to minimize while
the remaining objectives are turned into an inequal-
ity constraint with a parametric right-hand-side,Lk.
The problem takes on the following form:

min Zj , (2)

s.t. h(x, y) = 0,

g(x, y) ≤ 0,

Zk ≤ Lk, k = 1, . . . , j − 1, j + 1, . . . , p,

whereZj is the chosenj-th objective that is to be
optimized. Solving repeatedly for different values
of Lk chosen between the upper,ZL(j) and lower
boundsZU (j) leads to the Pareto set. The multi-
objective optimization algorithm used in this work
uses the Hammersly sequence sampling to gener-
ate combinations of the right-hand-side. The aim
is to MInimize Number of Single Objective Opti-
mization Problems (MINSOOP) by exploiting the
n-dimensional uniformity of the HSS technique.
Figure 4 shows how this MINSOOP (Fu and Di-
wekar [2004]) algorithm improves efficiency for a
simple, nonlinear, convex optimization problem, as
the number of objectives increases.

3 REAL WORLD CASE STUDIES

To illustrate the usefulness of this algorithmic
framework, two real world case studies are pre-

sented here. The first case study is from a chemi-
cal industry and involves all the calculation loops.
The second case study deals with fuel cell based
hybrid power system. This case study illustrate,
how uncertainties can change the trade-offs and also
shows that inclusion of uncertainty analysis in the
optimization framework results in solutions that are
closer to reality.

3.1 Environmentally Benign Solvent Selection
and Solvent Recycling

Recently, Eastman Chemicals presented a difficult
separation system design problem (Kim and Di-
wekar [2002b]). The separation system (acetic acid-
water separation) consists of an extraction column
followed by a distillation column, and a decanter
separating the In Process Solvent (IPS, extractive
agent (solvent), and water. This process seemed to
be simple and easy to operate. However, in practice,
had several operational difficulties. The configura-
tion had no degrees of freedom for improving pro-
cess performance and flexibility. Therefore, varia-
tions in the feed condition led to severe process in-
stability resulting in impure products, environmen-
tally harmful effluent, and great economic loss. We
utilized the coupled solvent selection, solvent re-
cycling process synthesis approach made possible
by the new framework to provide several environ-
mentally benign solvents and process designs that
maximized acetic acid recovery, maximized pro-
cess flexibility, minimized environmental impacts in
terms of LC50, LD50, and BioConcentration Fac-
tor (BCF), and also minimized energy consumption.
Figure 5 shows the Pareto optimal solutions for the
three out of the six objectives. The solutions corre-
spond to four environmentally benign solvents. The
associated process designs not only show robustness
in the face of feed variations, but these designs are
environmentally friendly and provide high recov-
ery(97 % as compared to 60% base recovery for 10
% feed variation, and 98 % recovery for 5% vari-
ation where base recovery was 80 %). This figure
shows that the best designs are concentrated at the
right hand side and top corner. However, it should
be remembered that this figure only shows three
out of six objectives, we need to consider trade-offs
with respect to other objectives also. However, un-
like the base design, these designs provide decision
maker ample choice to find suitable best designs.
In this case study, we used computer-aided molecu-
lar design (CAMD) for environmentally benign sol-
vent selection. CAMD, based on the reverse use of
group contribution methods, can automatically gen-
erate promising solvent molecules from their fun-
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damental building blocks or groups. The set of
groups to be selected is specially designed for linear
or branched hydrocarbons where aromatic, cyclic,
and/or halogenated compounds are eliminated due
to environmental concerns. However, this resulted
in a combinatorial explosion of alternatives (e.g in
our problem 6.3 X 1032 possible combinations of
groups for solvent selection only). Moreover, un-
certainties are inherent in these group contribution
methods that needed to be characterized, quantified,
and included in the framework. This is a challeng-
ing task and process synthesis added more complex-
ity to this task. However, the new framework made
this task easier.

3.2 Multi-objective Designs for a Hybrid Fuel
Cell Power Plant under Uncertainty

As the first step towards a multi-objective analysis
for obtaining cleaner, efficient, cost-effective and
greener electricity, a fuel cell hybrid plant design
case study is presented here (Subramanyan et al.
[2004]). The study, which is sponsored by the Na-
tional Energy Technology Laboratories (NETL), is
based on a hybrid fuel cell power plant system that
uses both solid oxide fuel cells (SOFC) as well as
polymer electrolyte fuel cells (PEM). The aim of
this case study was to illustrate the benefits of using
the multi-objective optimization methods to obtain
designs with minimum environmental impacts and
superior performance. Figure 6a shows the Pareto
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Figure 6: Pareto-optimal surface for the SOFC-
PEM hybrid fuel Cell power Plant: (a) determin-
istic, (b) stochastic, (c) realistic



optimal solutions for minimization of cost and CO2

emissions, and efficiency maximization. Again,
these are three out of six objective functions that
are considered for this work. Here the contours rep-
resent different capital costs. The question is, will
these trade-offs change if models do not capture the
complete physical phenomena and uncertainties are
considered? Figure 6b shows such a surface for the
same three objective functions when uncertainties
are included in the analysis. For multi-objective op-
timization, these uncertainties are propagated using
the HSS technique and the expected values of the
objective functions are used for the analysis. It can
be seen that the modeling uncertainties have con-
siderable effect on the objectives since the trade-off
surfaces are markedly different. These uncertainties
can be reduced if better models are used and real-
istic results can be obtained. Figure 6c shows such
a realistic trade-off surface when uncertainties are
reduced to a minimum. After comparing the three
surfaces, it is obvious that inclusion of uncertain-
ties in the analysis (Figure 6b) resulted in trade-off
surfaces that are closer to reality(Figure 6c). How-
ever, obtaining the Pareto set for a highly nonlin-
ear system like the hybrid fuel cell power plant is
computationally very expensive even with simpli-
fied models used in this exercise. Inclusion of un-
certainties results in many fold increased computa-
tional intensity. Therefore, it was necessary to have
the efficient methods, algorithms, and better com-
putational power of the algorithmic framework, to
address these problems.

4 SUMMARY

This paper presents an efficient algorithmic frame-
work for environmental decision making. Environ-
mental systems pose discrete as well as continuous
optimization problems in the face of multiple ob-
jectives. Further, uncertainties are inherent in these
systems making the decision making more com-
plex. The algorithmic framework presented here in-
volves five calculation levels: (1) modeling level,
(2) stochastic analysis level where uncertainties are
dealt with, (3) nonlinear optimization level for con-
tinuous decision variables, and (4) discrete opti-
mization level, and (5) multi-objective optimiza-
tion. Efficient algorithms are used at each level for
solving large scale problems of significance. Two
real world case studies illustrate usefulness of this
framework. The first case study dealt with design-
ing greener solvents and solvent recycling process
for a chemical industry. This case study involved
all calculation levels presented in the algorithmic
framework. The order of magnitude increase in

computational efficiency of this framework made
this case study possible. The second case study is
devoted to greener energy production using fuel cell
based technology. This case study illustrated the im-
portance of including uncertainty analysis in opti-
mization in order to obtain realistic trade-offs.
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