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Abstract: The paper is about the modeling of  natural disasters, taking in account both the natural elements 
than the human behaviors and working on mixed scenarios of forests, build-up area, rivers and roads. 

We propose a three steps methodology that spans from the earth observation to categorization towards 
environment forecast modeling and action planning. As case study, we focused on fire spreading.  
Geographical Information Systems (GIS) and remote sensing tools are used to implement this scenario, while 
a multi-layer cellular automata is used to model the environment evolution. Finally, a multi-agent system is 
used to model human behaviors. 

We evaluated the performance of the proposed method using a case study in a real Italian Region, Sicily.   
The goal is to employ our integrated approach as standard base in developing a real Decisional Support 
System to support environmental protection and people life preservation. 
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1. INTRODUCTION 

The defense of the environment and people living 
in requires a solid understanding of the 
environment dynamics based on timely 
information. We can gather that information from 
ground sensors and remote sensing, in particular 
satellite images, and use them to feed a previsional 
systems obtaining understanding of in the risks for 
people and nature.    

Our study is focused on a generic decisional 
support system (DSS) framework that use Earth 
observation to forecast environment possible 
changes computed under experimental conditions, 
giving the decision maker a stronger ground to 
plan recovery and preventive actions. 

With this goal, our framework is based on  

• Satellite image classifications,  

• Geographical Information System (GIS) 
technology; 

• Evolving Cellular Automata (CA) and  

• Multi-Agent System (MAS) 

respectively for:  

• identify the ground conditions (e.g. the 
vegetation state); 

• unifying that conditions with already 
known knowledge (as the altitudes, the 

presence of rivers or houses etc.) and 
unifying raster and vector data; 

• receiving input from decision makers and 
modeling the evolution; 

• analyzing the human behaviors resulting 
from the change in the analyzed region. 

The first test bed of the framework is fire 
spreading in a heterogeneous landscape with 
woods and town. Although the main goal of our 
study was to verify an integrated methodology,  
the chosen  subject it is per se interesting. We 
consider utmost important to test our methodology 
with real data gathered from a real sized context, 
in order to experiment with a large scale use of the 
framework.  

2. SATELLITE IMAGE CLASSIFICATION: 
VEGETATION ANALYSIS 

Study area 

We studied area of  1.5 x 0.8 Km of the Italian 
Sicily Region. The zone include woodland, urban 
areas, roads and rivers.   



 

   
Figure 1. The Sicily target zone 

For this zone we used Ikonos images (4-bands and 
panchromatic), GIS layers for road etc.  

The main variable that influence the fire spreading 
is the vegetation health.  

Vegetation indices are widely used in remote 
sensing of woods and grassland (Rouse et al. 
1974; Chena et al., 2004; Hea et al., 2005 ) and 
more generally of the vegetation surface; this is 
possible because the healthy vegetation has a high 
spectral response in near-infrared bands.  

The Normalized Differing Vegetation Index 
(NDVI) is one of the most used index to measure 
vegetation strength (also defined stress).  The 
NDVI is calculated by using the ratio of the 
reflectance in red band and near infrared band 
(Langley et al., 2001) 
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Using the Ikonos images, NDVI works by dividing 
the difference and the  sum of two band intensities 
(band 3 and band 4) on pixel-by-pixel basis. The 
resulting index value of pixel typically ranges 
from around 0.1 to 0.7 for vegetation. The higher 
value means the denser vegetation. Rocks, bare 
soil, roads, rivers, and man-made objects produce 
the index value around 0. The NDVI calculated for 
the Sicily zone is shown in Figure 2. 

 

Figure 2. NDVI image classification  

 

 

 

Figure 3. NDVI image classification with applied 

median filter 

The NDVI classification is divided into 5 classes 
(0-4) to estimate of vegetation in  study area; these 
results are obtained from the infrared image and 
then applying the median filter  to smooth  each 
class of image, as shown in Figure 3. In this  way 
we elaborate the vegetation coverage map. The 
map is used as input by the modeler to compute 



 

the possibility of ignite and the speed of an 
ongoing fire. 

We used the satellite images to also analyze the 
panchromatic band of Ikonos. These one-band 
images have 1-meter resolution, giving us the 
possibility to recognize house, other buildings, 
roads. The results of this processing is used to 
update GIS, e.g., road map. All  these information  
are used by the modeler. 

 

Figure 4. Panchromatic band image with building 

coverage area classification (in red). 

From the above raster analyses, we obtain several 
classification using the KNN and other algorithms, 
e.g., computing the vegetation coverage 
classification, its stress, the building and road 
presence and area.  

3. GEOGRAPHICAL INFORMATION 
SYSTEM (GIS) 

All the classification information from the Earth 
observation are georeferenced and collected within 
a GIS. In this way we can better manage and 
correlate not only the different classified image 
data, but also other vector information gathered 
from other sources. 

For spatial alignment, all the data are transformed 
to the same Universal Transverse Mercator (UTM) 
geographical projection. 

At the end of the process, we have all the 
information in a geo data base with each category, 
raster or vector, organized in layers. 

Some data, for instance the building and road 
presence, are obtained either from the vector layer 
or from the image analyses. In this way we can 

complement them having all the already known 
knowledge and the up to date one from the Earth 
observation (e.g., tracking new buildings). 

Another advantage of the GIS is the possibility to 
use geographical operator to get valuable 
parameters for modeling, for example the distance 
of a point from a river or a road. This kind of 
queries are important for the Cellular Automata 
and for the agents.  

4. CELLULAR AUTOMATA (CA) 

Once analyzed the images, classified them and 
unified with vector data into a GIS, we are ready 
to exploit them to forecast environmental 
phenomena.  

In the test case we choose, the fire spreading,  this 
means to forecast the direction and the speed of 
the fire and hence the area involved. 

Definition of Cellular Automaton 

A Cellular Automaton is a simple device able to 
model complex systems. Usually a CA is defined 
by a finite grid of cells, where each cell models a 
discrete portion of space, and evolving discretely 
in time. The state of each cell at time t+1 is 
determined by the state of its adjacent cells 

More formally, a basic CA is 4-tuple defined as: 

CA=(Ed,X,Q,σ)   (2) 

Where: 

• Ed is the set of cells identified by the 
points with integer coordinates in a 
d-dimensional Euclidean space (i.e., 
partitioned with a square, cubic, 
hypercubic tessellation) where the 
phenomenon evolves; 

• X={ξ1, ξ2,…, ξm} is the neighborhood 
index, a finite set of d-dimensional 
vectors, which defines the set V(X, i) of 
the cell i as follows:  
V(X, i) = {i+ξ1, i+ξ2,…, i+ξm}  

• Q is the finite set of states for the cells; 

• σ : Qm → Q is the deterministic transition 
function of a cell; 

C = {c | c: Ed → Q } is the set of possible state 
assignments to CA and will be called the set of 
configurations; c(i) is the state of the cell i. The 
effect of the transition function σ is to change the 
configuration Ct into the new configuration Ct+1 
according to: 
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where we denote by X(n) the  set of neighbors of 
the cell n.  

The definition is well founded for regular CA with 
homogeneous transition function and neighbors 
and time scale. It is possible to extend the 
definition to include the heterogeneous variations. 

There are several ways to compute the set of 
neighbors of a cell; in a regular grid, the most used 
are: 

• the Von Neumann’s, which is constituted 
by a central cell and the four first 
neighbor cells in the direction north, 
south, east and west; 

• the Moore’s, including all the adjacent 
cells; 

• hexagonal neighbors, where the 
tessellation is similar to Moore’s but in 
hexagonal space. 
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Figure 5. Hexagonal cellular space; the grey cells 

evidence the neighbors of the central cell (2,1) 

Our framework can be used with all this types of 
neighbors, with any radius. However, we find 
more convenient to use the hexagonal one, 
because the more usual rectangular tessellation 
implies a greater distance from the center to the 
diagonal cells, raising the percentage of errors. 
Instead, using hexagons, all the adjacent cells are 
at same distance. 

So, the transition function we are using has the 
form: 

 t+1 t t t t t t t
r,c r,c r-1,c-1 r-1,c r,c-1 r,c+1 r+1,c-1 r+1,cS (S ,S ,S ,S ,S ,S ,S )f=  (4) 

where St
i  is the cell state i in time t, f() is the 

transition function that applies the rules that 
governs the state change of a cell, and r,c are the 
rows and columns in the grid. 

CA in the framework 

The CA are not new in the ecological modeling. It 
is possible to find a short review of such usage in 
Balzter et al. (1998) or, in different forms, in 
Wiering  and Dorigo (1998) and Parker et al. 
(2001). 

However, the most of the studies are focused on 
experimenting with transition functions while the 

use in a real context is not the main goal. So, 
usually the CA used to model that environment is 
not based on a GIS and/or Earth observation, 
reducing the input the CA can process and the 
reuse of the observations. 

We want to reverse this approach, simplifying the 
task of connecting real data with the CA. The 
initial state of the automaton is determined by the 
data from the GIS layers: e.g. roads, rivers, 
population density, vegetation stress etc.  

To give maximum freedom to the scientists that 
use the framework, we worked with a layered CA: 
we use several layer, each one an autonomous 
cellular automaton, that concurs to the final 
evolution. Our approach is similar to the Cellular 
Automata Network described in Calidonna et. al., 
2001. 

In a model with n-layers, the transition function  
can be defined as the composition of specific 
transition functions: 

 1 2 nσ σ σ σ= …  (5) 

A transition function can read the value of another 
one; it is possible to establish dependencies 
between layers (e.g. update the water layer before 
the burning wood) and to use different radius and 
neighbors for each layer.  

Layer 1

Layer 2

Layer 3

 

Figure 6. Layered Cellular Automata 

The CA can use some global wide variables. It is 
possible to generalize these variables as a layer 
with the same value for all cells. For fire 
spreading, such variables include the wind 
direction, the humidity etc. 

For visualization purpose, we establish an order in 
which to overlay the layers. An example output  is 
shown in Figure 7: in black the burned zone, in 
blue the urban area, in brown the bare soil, in 
green and yellow the vegetation at different stress 
level. 



 

 

Figure 7. A view of partial test zone in CA  

The output of CA engine are saved in HTML 
format, so it is possible to review all the time steps 
from a simple browser in the Web. 

Transition function for fire spreading 

What make the difference in the effectiveness of a 
modeling by a CA are the number of variables, the 
starting data and the transition function.  

Because our goal was not related to the creation of 
new, more realistic, transition function, we test the 
framework with literature algorithms, in particular 
Yongzhong et al. (2004) and  Karafyllidis and 
Thanailakis (1997). Our results are in line with 
that of the papers. 

Yongzhong et al. start from Rothermel’s fire 
behavior prediction model for calculating the fire-
spreading rate, 
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where Ir  is the reaction intensity, which measures 
the energy release rate; ξ is the propagating heat 
flux ratio, which expresses the proportion of the 
reaction intensity that heats the neighboring fuel 
particles to ignition; ρb  is the fuel bulk density; 
ε is the effective heating number, which measures 
the proportion of a fuel particle that is heated to 
ignition at the time combustion commences 
(dimensionless); and Qig is the heat of pre-ignition, 
which measures the quantity of heat required to 
ignite 1 kg of fuel. Then they extend Rothermel’s 
function and adapt it to a CA with hexagonal grid. 
All the details can be found in their interesting 
paper that includes laboratory experiments.  

5. MULTI AGENT SYSTEM (MAS) 

Modeling human behaviors 

The last phase of our proposed approach and 
framework is the modeling of human behaviors 

depending on the environment simulated by the 
CA in different time steps. 

The multi agent systems (MAS) are growing in 
interest in the environmental modeling arena, as 
testified by Parker et al. (2001). This interest is 
shared by computer scientist and geographers (a 
good example of latter is An et. alii, 2005).  

An agent is a software system, situated in an 
environment, able to perceive it through sensors 
and capable of flexible autonomous action in that 
environment, through effectors, in order to 
respond to its objectives. A multi agent system is a 
group of agents that interact each other, often with 
the need of coordination and negotiation and 
hence of communication. 

So, with a MAS, we can model the behaviour of 
single categories of persons (simple citizens, fire 
fighters,  helicopter pilots and so on) and their 
interaction. The agent behaviours are modelled 
with plan libraries using the Belife-Desire-
Intention (BDI) model, or learn to cooperate, as 
more usual in the a-life area. 

The interaction between MAS and CA are more 
common in the a-life. Indeed, yet in 1996 Epstein 
and Axtell have described the “Sugarscape”, an 
approach and a software, aimed to model social 
science  from the bottom up.  The problem with 
this approach is that it is difficult to model the 
“real” people behavior with a bottom-up approach. 

MAS in the framework 

In the test, we are using agents to simulate the 
escape from small town when a wildfire is going 
to harm it. The idea is to model the wildfire with 
the CA and then, if there is a potential danger for 
the people, to find the moment for a partial or total 
evacuation.  

In our framework, we are using BDI agents that 
extracts plan using as reference a probabilistic 
finite-state machine. We search an improvement of  
the agent behaviour modifying the probabilities of 
the arcs in the machine, so the resulting machine is 
the “better one” given the problem and the 
surrounding environment. Therefore, the resulting 
architecture is BDI at run time but alife in the 
learning approach. 

To synchronize the agents and the environment, 
we manage the environment as an agent (EnvA) 
including the CA, while the other agents request to 
the ask to EnvA the effects of the desiderated 
action; e.g., an agent A that want to move towards 
a point P ask to EnvA to compute which point it 
really reach, and the final point is computed on the 
base of the characteristic of A, the environment 



 

state as described by the CA and the world rules 
described in EnvA. 

As agent platform we are using Jade (Bellifemine, 
Poggi, Rimassa 1999), a FIPA compliant Java 
distributed environment. 

6. CONCLUSIONS 

Our goal was to demonstrate the feasibility and the 
usefulness of an Environmental Decisional 
Support System (EDSS) based on a process 
starting from remote sensing, with a modeler and a 
multi-agent system able to model human behavior.  

The framework implementing such process is now 
completed. We are now working with historical 
data to verify the soundness of our models with the 
recorded situations.   

We have used it to experiment with different fire 
transition functions and different Earth areas. We 
used it to provide insight in people security trying 
different fire start origins and meteorological  
parameters. We can conclude that the approach is 
valid and the framework can be used as a real 
EDSS. 

Because we want our system to be usable on real 
scenarios, we used consistently real world images, 
model dimensions and so on. This has caused a lot 
of troubles (the system is hard to test, the 
simulations carry on more time, the GIS products 
are not so easy to interface with a CA and so on), 
but we are rewarded with a flexible tool usable in 
real monitoring contexts. 

Now we are working in extending the MAS 
component and to discover and try more realistic 
fire spreading functions.  
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