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Abstract: Increasingly, models (and modelers) are being asked to address the interactions between human 
influences, ecological processes, and landscape dynamics that impact many diverse aspects of managing 
complex coupled human and natural systems.  These systems may be profoundly influenced by human 
decisions at multiple spatial and temporal scales, and the limitations of traditional process-level ecosystems 
modeling approaches for representing the richness of factors shaping landscape dynamics in these coupled 
systems has resulted in the need for new analysis approaches.  Additionally, new tools in the areas of spatial 
data management and analysis, multicriteria decision-making, individual-based modeling, and complexity 
science have all begun to impact how we approach modeling these systems.  The term "biocomplexity" has 
emerged a descriptor of the rich patterns of interactions and behaviors in human and natural systems, and the 
challenges of analyzing biocomplex behavior is resulting in a convergence of approaches leading to new 
ways of understanding these systems.  Important questions related to system vulnerability and resilience, 
adaptation, feedback processing, cycling, nonlinearities and other complex behaviors are being addressed 
using models employing new representational approaches to analysis. An emerging application area is 
alternative futures analyses, the study of how complex coupled human/natural systems dynamically respond 
to varying management strategies and driving forces.  This methodology is increasingly being used to inform 
decision makers about the implications of policy alternatives related to land and water management, 
expressed in terms related to human valuations of the landscape. Trajectories of change become important 
indicators of system sustainability, and models that can provide insight into factors controlling these 
trajectories are rapidly becoming essential tools for planning.  The complexity inherent in these systems 
challenges the modeling community to provide tools that capture sufficiently the richness of human and 
ecosystem processes and interactions in ways that are computationally tractable and understandable.  We 
examine one such tool, Evoland, which uses an actor-based approach to conduct alternative futures analyses 
in the Willamette Basin, Oregon. Actor-based approaches, spatially-explicit landscape representations, and 
complexity science are providing new ways to effectively model, and ultimately to understand, these 
systems. 
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1.     INTRODUCTION 
 
The term “biocomplexity” is used to describe the 
complex structures, interactions and dynamics of 
a diverse set of biological and ecological systems, 
often operating at multiple spatial and temporal 
scales. The study of biocomplexity reflects an 
intention to understand fundamental principles 
governing global behavior of these systems, 
expressed in terms of biological, physical, 
ecological and human dimensions, in terms of the 
interactions and resulting patterns and structures 
that collectively define system responses (Colwell 
[1998], Levin [1998], Manson [2001]).  Several 
decades of study and appreciation of the rich 
nature of the interactions that drive many systems 
of vital interest to humanity have led to an 
increasingly sophisticated set of hypotheses on 
how these systems respond to the many 
perturbations and cycles that they are exposed to. 

The scientific community is being asked to bring 
to bear these advances in our collective 
understanding of systems impacted by 
anthropogenic influences to improve management 
and planning of these systems, resulting in the 
need for new approaches to incorporating human 
behavior as an important component of ecological 
and environmental systems behaviors. As human 
impacts stress the ability of many systems to 
deliver the wealth of ecological, social and 
economic goods and services societies rely on, 
terms such as “vulnerability” and “resilience” 
have come into common use as ways to think 
about system response and the implications of 
human modification of these systems in 
maintaining functions perceived as important for 
human and natural uses.  The study of 
biocomplexity identifies and defines a set of 
concepts, hypotheses and approaches for 
understanding and characterizing the rich patterns 



of interactions and behaviors in these systems, 
with the goal of providing new insights into 
important questions related to system 
vulnerability and resilience, self organization and 
adaptation, feedback processing, cycling, and 
nonlinearities.  The modeling community is 
developing new approaches to representation and 
analysis that are allowing exploration of complex 
systems in ways that are beginning to answer 
questions how these systems interact, evolve, and 
transition to new, often unexpected, behaviors. 
 
The challenges of representing and analyzing 
biocomplex behavior are resulting in a 
convergence of approaches leading to new ways 
of understanding these systems.  Recent 
developments in mathematics related to complex 
systems analysis have provided a variety of new 
tools and strategies for exploring complex system 
dynamics (Bak and Chan [1989], Holland [1995],  
Kauffman [1969], Fernandez and Sole [2003])  
Key insights arising from these analyses focus on 
questions related to identifying system properties 
that result in self-organizing or emergent 
behavior, the nature of interactions that can lead 
to highly nonlinear behaviors in a range of 
systems, and the circumstances in which 
“surprises” in system response may be observed.  
As these concepts have been expanded from their 
initial focus on primarily physical phenomena to 
the examination of increasingly rich ecological, 
economic and social systems, ecological and 
environmental modeling efforts have become 
correspondingly more focused on incorporating 
biocomplexity considerations in their approaches 
and analyses.  Most of these approaches embody 
the concept that complex behavior arises from the 
collective interactions of large numbers of 
relatively simple entities (Holland [1995], Arthur 
et al. [1997]). Alternatively, the recently proposed 
theory of Panarchy (Holling [2001], Gunderson 
and Pritchard [2002]) proposes an alternative 
hypothesis that states that complex behavior 
results from a small number of controlling 
processes operating at multiple spatial and 
temporal scales.  While full articulation of the 
underpinnings of these approaches is beyond the 
scope of this paper, they clearly suggest that new 
modeling and analysis paradigms are needed, and 
modelers are beginning to incorporate concepts of 
self-organization, adaptation, multi-scalar 
interactions and multiple actors alongside more 
traditional process-based approaches to develop 
new classes of models able to more fully 
characterize and simulate biocomplex systems.   
 
Systems scientists have presented many examples 
of biocomplexity conceptualizations spanning 
purely ecological (Walker et al. [1969], Carpenter 
and Cottingham [1997]), social (Emery and Trist 

[1965], Bella [1997]), economic (Arthur et al. 
[1997]) and coupled human/natural systems 
(Scheffer et al. [2002].)  However, these broad 
conceptualizations have not lent themselves to the 
modeler’s need for reasonably concrete, well-
articulated and operational definitions amenable 
to computation and analysis.  For example, a 
Google search using the phrase “ecosystem 
resilience” returns on the order of 75000  “hits”, 
most of which discuss resilience of particular 
systems or classes of systems with broad brush 
strokes, describing in somewhat vague, fuzzy 
terms the general concept of a system being 
robust to change.  Examined closely, what 
constitutes “change” generally becomes 
somewhat nebulous.  In some cases, a change in 
the composition of the system is implied, without 
reference to the magnitude of the change in 
question, or whether the compositional change 
implies a change of function, e.g. the capacity of 
the system to provide a particular set of goods and 
services. In other cases, the focus is on examining 
system behavior, to better understand 
circumstances in which perturbations of the 
system will either be absorbed or send the system 
off in a new direction.  
 
We are seeing a transition from conceptual to 
more quantitative methods for describing and 
analyzing these systems (Carpenter and 
Cottingham [1997], Carpenter et al. [1999], 
Lepperhoff [2002], Chattoe [1998]), and a rich 
literature is emerging in this area.  A variety of 
methodologies building on and extending 
complex analysis of simpler physically-based 
systems to quantitatively describe and model 
biocomplex human and natural system behaviors 
are emerging, based on more traditional stability 
analyses applied to nonlinear systems. These 
analyses examine state spaces defined in terms of 
stability basin structure, distributions of attractors 
in state space, and ability of perturbations to 
move the system into alternate stability domains. 
Extending these concepts into the biocomplexity 
realm, we can define operationally useful 
descriptors of complex behavior that are relevant 
to management.  For example, system resilience 
can be defined as the capacity of a system to 
absorb perturbations while continuing to operate 
within it current stability domain.  Models that 
sufficiently characterize the structure of the state 
space with respect to attractor basin geometries 
can provide insight to managers on regions where 
vulnerability of a system to provide specific 
productions may be high. However, additional 
challenges exist: real state spaces may be highly 
multidimensional, dynamic, and nonlinear or even 
folded, making analysis of their structure difficult. 
Further, where management is based on multiple 
criteria (reflected by multiple model outputs), 



these outputs may have substantially different 
state space structures. Nevertheless, these 
concepts are being used to examine more realistic 
systems and applied to the management realm.   
 
2. ALTERNATIVE FUTURES 

 
In parallel to the emergence of biocomplexity as 
an analysis paradigm, a number of studies have 
recently focused on alternative futures analyses 
(e.g. Baker et al. [2004], Hulse et al. [2000], 
Santlemann et al. [2001], Steinitz and McDowell 
[2001], Voinov et al. [1999], Noth et al. [2000]).  
This has resulted largely from a need and desire 
to utilize analytical approaches, generally using 
process-level models synthesizing multiple 
landscape elements, to predict a particular set of 
responses of the target landscape to a particular 
set of perturbations reflecting alternative 
landscape management.  These efforts generally 
incorporate stakeholder involvement in 
determining the nature, pattern and scale of the 
perturbation(s) considered, and resulting modeled 
landscapes or landscape trajectories are used to 
assess the outcome behaviors.  While these efforts 
can be very effective for moving models into the 
policy and management arena and can provide 
insight into the implications of specific 
management strategies, they raise a number of 
issues related to our ability to effectively model 
the myriad of potential interactions and behaviors 
that may (or may not) lead to surprising and 
unforeseen results. While opening the door for 
modelers to interject current understanding of 
important processes and interactions into the 
management of coupled human/natural systems, 
alternative futures analyses can place additional 
burdens on the modeler, particularly related to 
identifying and incorporating interactions across 
multiple processes, possibly across multiple 
spatial and temporal scales. For example, a 
model-based assessment of stream biological 
production based on vegetative pattern at a site 
may generate questionable results when the 
broader influences of channel migration, wood 
production from upstream areas, or large, low-
periodicity flood events can substantially alter 
that pattern (Van Sickle et al. [2004]). The utility 
of incorporating additional complexity in a model 
is often unclear; particularly in situations that are 
data limited or mechanisms are not well 
understood, simpler models may be more reliable 
predictors of system response (NAS [2001]). 
Representing human decision making in the 
landscape may be necessary to incorporate the 
influence of and feedback to the human 
component of these systems, and can be 
accomplished through a stakeholder process 
(Hulse et al. [2004]) or modeled (Etienne et al. 
[2003]). 

 
 
3. ACTOR-BASED APPROACHES TO 

SIMULATING LANDSCAPE CHANGE 
 
 
3.1 Overview 
 
Landscape change modeling is at the core of most 
alternative futures analyses, and the last decade 
had seen considerable activity in this area (see 
Parker et al. [2003] for an excellent review).  This 
activity is in part a result of the widespread 
availability of GIS-based platforms and datasets, 
complimented by a rapid increase in computing 
power and sophistication of representational tools 
for software development resulting from a 
convergence of approaches derived from 
individual-based modeling and complexity 
analysis.  In particular, actor-based approaches 
have become a commonly-used tool for 
representing human interactions driving landscape 
change, as well as many other types of systems in 
which collective behavior arises from collective 
behavior. Actor-based models typical explicitly 
represent 1) a landscape as a collection of 
decision units, defined by spatial properties and 
attributes relevant to the decision making criteria 
relevant to the task addressed by the modeler, and 
2) entities that make decisions and/or take actions 
that result in landscape change.  While the term 
“agent” is used commonly in the literature to 
describe these entities, we prefer the term “actor”, 
since “agent” has a number of connotations in 
computer science distinctly different than the 
usage described here, and “actor” has a clearer 
semantics consistent with common usage of the 
term in a non-modeling context.  
 
An appeal of an actor-based approach for 
landscape change modeling is that modeled actors 
can be based in large part on actual actors 
contributing to behaviors of the real system which 
the model is attempting to capture, increasing the 
realism of the model.  Simulated actors may be 
based on individual decisionmakers, collections 
of individuals acting as a homogeneous entity, or 
as abstractions with no specific real-world 
counterpart (e.g. organizational structures 
reflecting collective actions that are not captured 
in specific real-world organizations). From a 
modeling perspective, the task of the modeler 
involves determining an appropriate set of 
characteristics that represent the attributes of the 
actor relevant to the model, and a set of actor 
behaviors that capture the decisions or actions of 
the actors in the system.  While the set of 
necessary actor attributes is highly dependent on 
the problem being addressed, behaviors typically 
consist of some form of decision rules that related 



site and/or system characteristics to a particular 
actor action and resulting landscape change. 
Determining an appropriate set of actors and their 
corresponding behaviors is a significant modeling 
challenge, and may involve expert knowledge, 
surveys, demographic and population behavior 
analysis, and other methods; this is an active area 
of research. 
Self-organization and adaptation are key aspects 
of many types of complex behavior generally, and 
landscape change specifically. Adaptation implies 
that a system modifies its behavior, or “learns”, 
through the processing of feedback describing the 
success of current strategies at achieving desired 
outcomes. Adaptive mechanisms may occur at 
multiple scales and may operate though a variety 
of distinct pathways. At an actor level, adaptation 
may involve changing decision behavior, 
reflecting changes in landscape production, actor 
goal satisfaction and other decision criteria.  At a 
system level, adaptation may manifest as higher-
order changes in actor composition, changes in 
decision spaces and system process 
reorganization.  Relatively few current models 
explicitly incorporate adaptive processes into 
their representations; this is another area of active 
development. 
 
3.2 An Example Alternative Futures Modeling 

Framework – EvoLand 
 
A number of frameworks for complex systems 
and alternative futures analyses have been 
developed (Noth et al. [2000],  Sengupta and 
Bennett [2003], Maxwell and Costanza [1995], 
Daniels [1999]), each providing a specific set of 
capabilities for representing and manipulating 
supported representations of the system of 
interest.  These frameworks can simplify 
implementation of models and provide standard 
methods for data management, model integration, 
and analysis. EvoLand (for Evolving 
Landscapes) is an example of a modeling tool 
that supports development of spatially explicit, 
actor-based approaches to landscape change and 
alternative futures analysis.  EvoLand provides a 
framework for representing 1) a landscape 
consisting of a set of spatial containers, or 
integrated decision units (IDU’s), modeled as a 
set of polygon-based geographic information 
system (GIS) coverages containing spatially-
explicit depictions of landscape attributes and 
patterns, 2) a set of actors operating on a 
landscape, defined in terms of a value system that 
couples actor behavior to global and local 
production metrics and in part determine policies 
the actor will select for decision making, 3) a set 
of policies that constrain actor behavior and 
whose selection and application results in a set of 
outcomes modifying landscape attributes, 4) a set 

of autonomous process descriptions that model 
non-policy driven landscape change,  
 
and 5) a set of landscape evaluators modeling 
responses of various landscape production metrics 
to landscape attribute changes resulting from 
actor decision making.  EvoLand provides a 
general-purpose architecture for representing 
landscape change within a general paradigm 
incorporating actors, policies, spatially explicit 
landscape depictions, landscape feedback, and 
adaptation; application-specific components are 
“plugged in” to EvoLand as required to model 
particular processes. 
 
The fundamental organizational structure used in 
EvoLand is shown in Figure 1.  Key elements in 
this organizational scheme are Policies, Actors, 
Actions, Policy and Cultural Metaprocesses, 
Autonomous Landscape Change processors, and  
 
Landscape Evaluators.  Definitions for these key 
elements are provided below.  Taken together, 
these elements provide a basic platform for 
assembling actor-based models of landscape 
change.  Because many of these elements are 
“pluggable” software components, the basic 
EvoLand platform can be used with application-
specific actor definitions, policy sets, autonomous 
process descriptions, and landscape evaluators. 
 
 
3.2.1 Policies 
 
Policies in EvoLand provide a fundamental 
construct guiding and constraining actor land 
use/land management decision making.  Policies 
capture rules, regulations, and incentives and 
other strategies promulgated by public agencies in 
response to social demands for ecological and 
social goods, as well as factors used by private 
landowners/land managers to make land and 
water use decisions. They contain information 
about site attributes defining the spatial domain of 
application of the policy, whether the policy is 
mandatory or voluntary, goals the policy is 
intended to accomplish, and the duration the 
policy, once applied, will be active at a particular 
site.  As actors assess alternative decisions about 
land management, they weigh the relative utility 
of potentially relevant policies to determine what 
policies they will select to apply at any point in 
time/space, is any.  Once applied, a policy 
outcome is triggered that modifies one or more 
site attributes, resulting in landscape change.  
 
Policies are characterized by two types of 
decision variables:  (1) those required to be 
satisfied before the policy can be considered (also 
known as noncompensatory attributes or 



constraints), and (2) compensatory factors 
defining the intention of the policy at addressing 
specific goals, which can be “traded off” against 
other objectives in decision making using a 
multiobjective decision making algorithm.  
Further, policies may optionally be constrained to 
operating only with selected actor classes (e.g., all 
home owners, farmers with streams flowing 
through their property, forest owners with 
anadromous fish in adjacent streams.) 
 

 
3.2.2    Actors 
 
In EvoLand, actors are entities (individuals or 
groups) that make decisions about the 
management of particular landscape units (IDU’s) 
for which they have management authority, based 
on balancing a set of objectives reflecting their 
particular values, mandates, and the policy sets in 
force on the parcels they manage. They do this 
within the scope of "policy sets" that are operative 
on particular landscape elements over which they 
have decision making control.   Fundamentally, 
actors are characterized by the values they 
express through their behaviors; examples might 
include ecosystem health, economic production, 
or property rights.  These values in part guide the 
process actors use to select policies to implement; 
policies with intentions consistent with the actors’ 
values are more likely to be selected by the actor 
for application. 
 
In addition to actor values, EvoLand supports 
interaction between actors via two mechanisms: 

1) neighbor influence on decision making, and 2) 
actor membership in organizations promoting a 
specific value system and capable of 
promulgating new policies consistent with the 
organization’s values.  Neighbor influence is 
intended to capture the concept of diffusion of 
innovation:  i.e. if an actor observes a neighbor 
utilizing policies that result in a successful 
outcome consistent with the actor’s value system, 
the actor is more likely to implement that policy.   
 

 
“Neighbor” is defined in terms of spatial 
proximity of the two actors; an alternative 
approach would generalize the location metrics to 
include non-spatial definitions of proximity, e.g. 
proximity of values systems.   
 
Actor decision making is based on a stochastic 
multicriteria model that considers multiple factors 
to select policies the actor will implement.  These 
factors include the consistency of the policy 
intention with the actor’s values (based on the 
degree of self-interest the actor exhibits), the 
alignment of the policy intention with global 
measures of scarcity of various landscape 
productions (based on the degree of altruism the 
actor exhibits), and the degree of actor interaction 
with other actors successfully employing the 
policy.  EvoLand allow the modeler to experiment 
with the relative weightings of these factors to 
exploring their effects on system behavior.   
 
 
3.2.3   Policy Metaprocess.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Conceptual Framework for EvoLand 
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EvoLand employs two metaprocesses that reflect 
feedback loops that modify system behavior at a 
high level.  The first of these, the Policy 
Metaprocess, modifies the policy set that is 
available to actors.  The second, the Cultural 
Metaprocess, modifies Actor behavior. 
 
The Policy Metaprocess is responsible for 
generating new policies, modifying existing 
policies, and removing existing policies that are 
no longer relevant.  An evolutionary model is 
employed to manage the adaptation and creation 
of policies responsive to scarcity measures, i.e. a 
marketplace of policies is created, where policies 
compete for success, defined in terms of measures 
such as 1) the frequency a given policy is 
employed, and 2) the utility of the policy at 
addressing current scarcity issues. The Policy 
Metaprocess is an example of an adaptive 
process, using genetic operators (selection, 
crossover, mutation, and genesis) to evolve new 
policies based on recombination of successful 
policies, where the success (“fitness”) of a policy 
is defined via the Landscape Evaluator metrics.  
This approach doesn’t capture actual 
policymakers in the real system, but focuses more 
on policy evolution independent of who or what is 
actually creating those policies.  
 
 
3.2.4     Cultural Metaprocess. 
 
The Cultural Metaprocess is responsible for 
adaptively modifying the behavior of actors in the 
systems.  Actor behavior is defined by the value 
system it uses to guide decision making and its 
connections to other actors. The Cultural 
Metaprocess uses output from the Landscape 
Evaluator to change an actors values in response 
to shifting societal measures of scarcity, and 
manages the interactions between actors describe 
previously. 
 
The specific steps used by the Cultural 
Metaprocess are similar to that used by the Policy 
Metaprocess, and focus on allowing actors to 
adaptively modify their behaviors based on 
landscape feedback and interactions with other 
actors.  The Cultural Metaprocess may 
(optionally) adjust actor values in response to 
changing corresponding to broad societal shifts in 
values as resources and production become 
scarce. Alternatively, the Cultural Metaprocess 
may manifest cultural processes though actor 
interactions, capturing the concept that as 
scarcities manifest themselves, the actor 
population responds through “experiments” that 
may/may not alleviate the scarcity, and that 
“successful” experiments spread through 
diffusion adoption resulting from actors observing 

successes achieved by other “nearby” actors with 
similar goals.  These experiments are conducted 
through genesis and evolution of new policies, 
applied locally; successful policies then have an 
opportunity to expand globally as an adaptive 
process.  In essence, the system “learns” 
successful policies through experimentation by 
individual actors, with successful policies adopted 
by other actors as landscape attributes and actor 
interactions allow. 
 
 
3.2.5   Autonomous Landscape Change 

Processes 
 
Landscapes change in response to a variety of 
factors other than human decision making.  
EvoLand support plug-in components that 
periodically change the underlying landscape, 
reflecting autonomous processes that occur 
independently of human actions. From an 
alternative futures modeling perspective, this 
enables EvoLand to incorporate these processes 
into the simulated trajectories of change.  
Examples of autonomous processes include 
vegetative succession, river channel restructuring 
and meandering in response to flood events, or 
external population influx and distribution.  
EvoLand provides a basic framework for 
incorporating application-specific autonomous 
processes into a landscape change model, and 
managing the interactions of these process with 
policy-driven landscape modifications.  Together, 
these provide a robust representation of change 
processes that can be adapted to a wide variety of 
situations. 
 
 
3.2.6   Landscape Evaluators 
 
These components allow EvoLand to evaluate 
landscape production of metrics relevant to actor 
decision making.  They are typically spatially 
explicit models that take a landscape, represented 
as a attributed coverage of IDU’s, as input, and 
generate a suite of metrics related to a specific 
type of system production (e.g. ecological 
population abundances and diversity measures in 
the case of an ecosystem health-oriented goal; 
jobs and wealth production in the case of an 
economically-oriented goal.)  The models provide 
measures of landscape performance and serve as a 
primary form of feedback considered by 
EvoLand. They also provide a point at which 
more traditional approaches to modeling may 
intersect with actor-based approaches, since these 
models do not directly interact with actors, but 
reflect actor influences on landscape change as 
well as indirectly influencing actor behavior via 
other mechanisms previously notes. In EvoLand, 



these models are plug-in components, allowing 
alternative representations to be readily compared 
to better understand the implications of specific 
representations and factors on system behavior, 
and allowing the extension of EvoLand into 
additional domains of consideration. 
 
 
3.2.7     Biocomplexity Analyses 
 
A primary rationale for an alternative futures 
model, as with any modeling effort, is to provide 
insights on system behavior.  The traditional tools 
of model analysis (e.g. sensitivity analysis, model 
verification) are equally applicable to actor-based 
models. However, the intrinsic complexity 
typically captured in these models, and the 
generally long time frames they encompass, 
suggest a shift in emphasis from rigorous 
validation to a more exploratory approach to 
model use. In alternative futures analyses, we are 
typical more concerned with providing reasonable 
estimates of the bounds of system behavior than 
with prediction of specific outcomes, suggesting a 
Monte Carlo or similar approach focusing on 
characterizing the likelihood of realizing 
qualitative distinct system behaviors.  From a 
complexity perspective, the emphasis typically 
shifts again; analyses focus on system stability, 
identifying  attractors in behavioral space, the 
nature and strength of these attractors, and the 
factors that tend to drive the system from one 
basin of attraction to another characterized by 
fundamentally different controlling processes, 
productions and behaviors. 
 
Within EvoLand, we are just starting to 
experiment with various biocomplexity analyses; 
our current efforts focus on 1) defining a set of 
experiments addressing the effects of various 
mechanism of feedback processing and actor 
interactions on system behavior, 2) exploring 
mechanisms of policy evolution and capacity to 
generate innovative and effective policies as an 
adaptive process; 3) characterizing the nature of 
the landscape state spaces to identify dominant 
attractors that persist under dynamic trajectories 
of change and the circumstances under which the 
landscape may move to an alternate attractor 
basin, and 4) vulnerability of landscapes to 
change under various policy scenarios.  
 
 
3.3 Applying EvoLand – A Case Study in 

the Willamette Basin, Oregon 
 
EvoLand is currently being used to conduct a 
series of alternative futures analysis in selected 
areas of Oregon’s Willamette River Basin, aimed 
at better understanding the relationships and 

interactions between ecological, economic and 
social drivers of change to improve management 
of these areas.  We are focusing on the 
confluences of major tributaries along the 
mainstem of the Willamette River, historically 
areas of both ecological richness and high 
anthropogenic impact. The study areas are 
characterized using spatial datasets incorporating 
land use and land cover, soils and hydrography, 
demographic, political and related cultural and 
physiographic datasets.  The IDU’s are 
determined using parcel-level information in 
combination with other vector coverages relevant 
to decision making, including floodplain 
delineations and riparian buffers. Actors are 
defined primarily through an analysis of 
demographic patterns; we are currently exploring 
the use of additional datasets to more richly 
characterize actor behavior.  A number of 
goals/values are being considered, including 
ecosystem health, economic production, and 
property rights protection; each is represented by 
a landscape model that compute a set of metrics 
relevant to the particular goal considered.  For 
example, ecosystem health is modeled using a 
suite of submodels that consider fish abundance 
and diversity, riparian vegetative structure, and 
upslope habitat quality; economic production 
submodels include jobs and wealth production.  
An initial set of policies are crafted based on 
current operative policies in the study areas as 
well as policies that are currently being 
contemplated; as landscape change modifies 
landscape production, actor population 
demographics, and actor behaviors, EvoLand 
evolves new policies in response to these 
changing condition as a primary adaptive 
feedback mechanism.  We focus primarily on land 
use/land cover change, using a 50 to 100 year 
analysis period and a stochastic analysis 
approach, using trajectories and patterns of 
change to determine likely development patterns, 
vulnerability of specific landscape areas to 
changes in capacity to provide ecological, 
economic and social productions of concern.  We 
are using EvoLand to 1) explore the impacts of 
various feedback loops and interactions on system 
behavior, expressed though trajectories of change 
and the nature of the resulting attractor basins of 
the system productions described above; 2) 
identify policy characteristics that lead to more or 
less vulnerable landscapes, and 3) understand the 
critical linkages between the coupled 
human/natural systems that collectively generate 
landscape change.  
 
The explicit consideration of adaptive approaches 
for policy discovery and actor behavior evolution 
provide EvoLand the ability to generate new, 
potentially unexpected behaviors, and suggest a 



new set of analyses examining effects of 
alternative feedback mechanisms, actor 
interactions, and adaptive strategies on policy 
evolution and trajectories of change. This 
adaptive response allows EvoLand to create and 
explore fundamentally new strategies for 
actor/environment interactions that are not 
“preprogrammed” into the models. Are ultimate 
goal is to understand the role that 
“experimentation”, expressed in terms of new 
strategy generation, propagation of successful 
strategies through actor networks, and actor 
rejection of unsuccessful policies, has on the 
ability of the system to respond to scarcity and 
changing landscape dynamics. We anticipate 
being able to test, for example, a hypothesis that 
resilience of a landscape, defined in terms its state 
space structure, is related to its capacity for 
innovation and adaptation, in ways that more 
traditional models cannot. Using models that 
significantly capture the rich interactions of actual 
coupled human/natural systems opens the door to 
utilizing the insights achieved by these modeling 
efforts to better understand management of real-
world biocomplex systems. 
 
Analyses such as these are fundamentally 
multiperspective, integrative, and spatially 
distributed; an actor based approach appears well 
suited to capturing the rich set of individual 
behaviors, distributed across a spatially 
heterogeneous landscape, that collectively result 
in the system-level patterns these systems display. 
EvoLand provides a reasonably flexible 
framework that allows adaptation of existing 
evaluative models into an actor-based modeling 
paradigm, and facilitates analysis of feedbacks, 
adaptive processes, and system behavioral 
response patterns. Significant issues exist, 
particularly related to sufficiency of actor 
characterization, model validation, and 
interpretation of the rich sets of spatial and 
temporal information produced by the model.  
The modeling community has yet to develop a 
broadly accepted set of approaches to these 
issues. 
 
 
4. Future Challenges 
 
There remain many issues and challenges related 
to the use of actor-based models of biocomplex 
systems.  Despite the wealth of discussions in the 
literature related to both biocomplexity and actor-
based modeling approaches, few concrete 
examples of the use of actor-based models 
addressing biocomplexity issues have been 
presented; still fewer of these incorporate 
adaptive mechanisms and internal 
experimentation as fundamental aspects of 

representation. A key issue at this point whether 
these approaches represent only a current fad, 
extensions to previous methodologies, or 
fundamental new approaches to modeling and 
understanding complex systems.  The complexity 
analysis models drawing from simpler physical 
systems have yet to be convincingly demonstrated 
to have real-word relevance to the more complex 
adaptive systems ecological and environmental 
modelers typically address. Our current models, 
particularly those addressing alternative futures 
analysis, are difficult to verify in any traditional 
way and new approaches and datasets are needed 
to validating these models; this will be a key 
challenge to allow more widespread acceptance of 
these models for real-world applications. We have 
yet to develop well-specified operational 
definitions of key concepts like resilience, 
vulnerability, and adaptation, although current 
models are beginning to make progress in this 
area (e.g. Carpenter et al. [1999]).  Indeed, no 
widely accepted general theoretical framework 
for expressing biocomplexity concepts currently 
exists, much less a common set of approaches for 
representing this complexity in our models of 
these systems.  However, a number of approaches 
are being developed and being applied to the 
analysis of real systems. In particular, actor-based 
modeling approaches are beginning to emerge and 
appear to provide a powerful tool for representing 
the wealth of individual decisions, actions, and 
interactions that frequently characterize these 
systems, particularly as adaptive processes 
become fundamental incorporated and explicitly 
represented in these models.  Models such as 
EvoLand provide examples for which operational 
approaches to representing and characterizing 
actors, adaptive processes, and interpretation of 
biocomplex responses are being developed.   
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