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Abstract: A novel approach to uncertainty assessment, known as the NUSAP method (Numeral Unit
Spread Assessment Pedigree) was applied to assess qualitative and quantitative uncertainties in the TIMER
energy model, part of RIVMs IMAGE Model. The TIMER model is a system dynamics energy model that
has been used, for instance, in the development of the new IPCC baseline scenarios (SRES). For our analysis
we have used the IMAGE B1 scenario as case study. We used two complementary tools to assess uncertainty:
(1) The Morris algorithm for global sensitivity analysis and (2) a NUSAP expert elicitation workshop, which
assessed different aspects of the strength of the knowledgebase of the parameters. Results of (1) and (2) were
combined into a diagnostic diagram putting spread and strength together to provide guidance in prioritisation
of key uncertainties. The project has shown that the NUSAP method can be applied to complex models in a
meaningful way. The method provides a means to focus research efforts on the potentially most problematic
parameters, identifying at the same time specific weaknesses in these parameters.
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1. INTRODUCTION

 This paper summarizes a project in which we
assessed uncertainties in the TIMER energy model,
both qualitatively and quantitatively. The TIMER
energy model is part of RIVMs Integrated Model
to Assess the Global Environment (IMAGE). The
TIMER model (Targets IMage Energy Regional
model) is a system-dynamics energy model that
has, amongst others, has been used in the
development of the new IPCC emission scenarios.
For our analysis, we used the B1 scenario
produced with IMAGE/TIMER for the IPCC
Special Report on Emissions Scenarios as case
study.

 In the field of integrated assessment modelling,
uncertainty studies have mainly involved
quantitative uncertainty analysis of parameter
uncertainty. These quantitative techniques provide
only a partial insight into what is a very complex
mass of uncertainties. This project has
implemented a novel approach to uncertainty
assessment, known as the NUSAP method

(acronym for Numeral Unit Spread Assessment
Pedigree).

 

2. NUSAP AND THE DIAGNOSTIC
DIAGRAM

The NUSAP (Numeral Unit Spread Assessment,
Pedigree) method aims to provide an analysis and
diagnosis of uncertainty. It captures both
quantitative dimensions and qualitative dimensions
of uncertainty (Funtowicz and Ravetz 1990). The
method addresses two independent properties
related to uncertainty in numbers, namely spread
and strength. The two metrics can be combined in
a diagnostic diagram  mapping strength and
sensitivity of model parameters. The Diagnostic
Diagram is based on the notion that neither spread
alone nor strength alone is a sufficient measure for
quality. Robustness of  model output to parameter
strength could be good even if parameter strength
is low, provided that the model outcome is not
critically influenced by the spread in that
parameter. In this situation our ignorance of the
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true value of the parameter has no immediate
consequences because it has a negligible effect on
model outputs. Alternatively, model outputs can be
robust against parameter spread even if its relative
contribution to the total spread in model is high
provided that parameter strength is also high. In the
latter case, the uncertainty in the model outcome
adequately reflects the inherent irreducible
uncertainty in the system represented by the model.
In other words, the uncertainty then is a property of
the modelled system and does not stem from
imperfect knowledge on that system. Mapping
model parameters in the assessment diagram thus
reveals the weakest critical links in the knowledge
base of the model with respect to the model
outcome assessed, and helps in the setting of
priorities for model improvement.

3. SENSITIVITY ANALYSIS

By means of a sensitivity analysis we explored
criticality of quantitative uncertainty in parameters
in terms of their relative importance in influencing
model results. TIMER is a non-linear model
containing a large number of input variables, all
liable to uncertainties of different orders of
magnitude. A proper sensitivity analysis asks in
such situation for an approach that covers the
entire range of possible values for a given input
variable. The Morris (1991) method facilitates
such global sensitivity analysis in a minimum
number of model runs.

The Morris method is a sophisticated algorithm
where parameters are varied one step at a time in
such a way that if sensitivity of one parameter is
contingent on the values that other parameters may
take, the Morris method is likely to capture such
dependencies. The analysis differentiated clearly
between sensitive and less sensitive model
components. TIMER contains 300 variables that
serve as input to the model. Parameters were varied
over a range from 0.5 to 1.5 times the default
values. The method and full results are
documented in chapter 5 of Van der Sluijs et al.
(2002).

The results show that the model outcome is
sensitive to uncertainty in a substantial number of
parameters (about one third). The combination of
these uncertainties may hence produce substantial
spread in model outcome. We also found that the
sensitivity to uncertainty in a large number of
parameters was contingent on the particular
combinations of samplings for other parameters,
reflecting the curvi-linear nature of many
components of the TIMER model. The following
input variables and model components (groups of

input variables) were identified as most sensitive
with regard to model output (CO2 emission
projections):

• Population levels and economic activity as
main drivers;

• Variables related to the formulation of intra-
sectoral structural change;

• Progress ratios to simulate technological
improvements, used throughout the model;

• Variables related to resources of fossil fuels
(size and cost supply curves);

• Variables related to autonomous and price-
induced energy efficiency improvement;

• Variables related to initial costs and depletion
of renewables;

4. PARAMETER STRENGTH AND
PEDIGREE

Pedigree conveys an evaluative account of the
production process of information, and indicates
different aspects of the underpinning of the
numbers and scientific status of the knowledge
used. Pedigree is expressed by means of a set of
pedigree criteria to assess these different aspects.
The pedigree criteria we used are: proxy, empirical
basis, theoretical understanding, methodological
rigour, and validation (Table 1).

Code
Proxy Empirical Theoretical

basis
Method Validation

4 Exact
measure

Large
sample
direct mmts

Well
established
theory

Best
available
practice

Compared
with indep.
mmts of
same
variable

3 Good fit or
measure

Small
sample
direct mmts

Accepted
theory
partial in
nature

Reliable
method
commonly
accepted

Compared
with indep.
mmts of
closely
related
variable

2 Well
correlated

Modeled/
derived data

Partial
theory
limited
consensus
on reliability

Acceptable
method
limited
consensus
on reliability

Compared
with mmts
not
independent

1 Weak
correlation

Educated
guesses /
rule of
thumb est

Preliminary
theory

Preliminary
methods
unknown
reliability

Weak /
indirect
validation

0 Not clearly
related

Crude
speculation

Crude
speculation

No
discernible
rigour

No
validation

Table 1. Pedigree matrix for parameter strength.
Note that the columns are independent. (Ellis et al.,

2000a, b; Risbey et al., 2001)

Assessment of pedigree involves qualitative expert
judgement. To minimise arbitrariness and
subjectivity in measuring strength a pedigree
matrix is used to code qualitative expert
judgements for each criterion into a discrete
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numeral scale from 0 (weak) to 4 (strong) with
linguistic descriptions (modes) of each level on the
scale. Table 1 presents the pedigree matrix we used
in this project.

5. SET UP OF THE NUSAP WORKSHOP

We assessed parameter pedigree by means of a
NUSAP expert elicitation workshop on June 12
and 13 2001, in Loosdrecht, The Netherlands. The
workshop was attended by 19 experts on the fields
of energy economy and energy systems analysis
and uncertainty assessment. The primary goal of
the workshop was to assess the strength of the
input values for key variables. For a full
description of the methodological details of the
elicitation we refer to Van der Sluijs et al., 2002.

We limited the elicitation to those parameters
identified either as sensitive by the Morris analysis
or as a key uncertain parameter by expert
elicitation in a interview with one of the TIMER
modellers. Our selection of variables to address in
the NUSAP workshop counted 39 parameters. To
further simplify the task of scoring pedigree
criteria for each parameter at the NUSAP
workshop, we grouped together similar parameters,
either because they related to the same concept
and because the pedigree scores might be to some
extent similar for a group of similar parameters.
We were able to group the selected parameters into
18 clusters. For each cluster a information and
pedigree scoring card was made, providing
definitions and elaborations on the parameters and
associated concepts, and a scoring part to fill out
the pedigree scores for each parameter.

The workshop was set up in three phases:
• a plenary session with introductory lectures
• a expert elicitation session in 3 parallel groups
• a concluding plenary session

For the expert elicitation session, we divided the
participants into 3 parallel groups of 6 person. The
groups were made balanced with regard to inter
alia expertise. Each participant received a set with
all 18 cards listing the parameters to be reviewed.
Assessment of parameter strength was done by
discussing each of the parameters (one card at a
time) in a moderated group discussion addressing
strengths and weaknesses in the underpinning of
each parameter, focussing on, but not restricted to,
the 5 pedigree criteria and eliciting the scores of
the parameters for each of these pedigree criteria.
Further we asked to provide a characterisation of
the degree to which that parameter was considered
to be value-laden. A parameter is said to be value
laden when its estimate is influenced by ones
preferences, perspectives, optimism or pessimism

or co-determined by political or strategic
considerations. Participants were asked to draft
their pedigree assessment as an individual expert
judgement, informed by the group discussion.

We concluded the workshop with a plenary
session, reflecting on our experiences with the
method during the workshop. Overall there was a
shared feeling amongst participants that the
NUSAP method and the elicitation procedure with
the cards facilitates and structures a creative
process and in depth discussion on and assessment
of uncertainty. The task of quality control in
complex models is a complicated one and the
NUSAP method disciplines and supports this
process.

6. WORKSHOP RESULTS

After the workshop all the cards were collected and
coded. In the analysis we treated results from the
three groups separately so that we could check for
intergroup differences in results.

We used two different diagrams to graphically
represent the results: radar diagrams, and kite
diagrams (Risbey, Van der Sluijs and Ravetz,
2001). An example of both representations is given
in Figure 1.

Both representations use polygons with one axis
for each criterion, having 0 in the center of the
polygon and 4 on each corner point of the polygon.
Note that we inverted the scores for value-
ladeness, so high value-ladeness is in the center
and negligible value-ladeness in on the corner
point for that axis. This is to keep for all the
criteria the danger zone at the zero end of the scale
(center) and the safe zone at the high end of the
scale (corner point).

Figure 1a. Example of
radar diagram of the gas

depletion multiplier
assessed by  6 experts

Figure 1b. same, but
represented as kite
diagram. G=green,

L=light green,
A=amber, R=red

In the radar diagrams the scoring of each expert is
represented by a line, using a different color for
each expert in the group, whereas also a line
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connecting the average scores for each criterion is
given (black line).

The kite diagrams follow a traffic light analogy.
The green kite is spanned up by the minimum
scores in each group for each pedigree criterion;
the orange kite (amber in the traffic light) is
spanned up by the maximum scores. The width of
the orange band between the green kite and the red
area represents expert disagreement on the
pedigree scores for that variable. In some cases the
size of the green area was strongly influenced by a
single deviating low score given by one of the six
experts. In those cases the light green kite shows
what the green kite would look like if that outlier
had been omitted. Note that the algorithm for
calculating the light green kite is such that outliers
are evaluated per pedigree criterion, so that outliers
defining the light green area need not be from the
same expert.

The kite diagrams can be interpreted as follows:
the size of the green colored area reflects the
(apparent minimal consensus) strength of the
underpinning of each parameter. The orange
colored zone shows the range of expert
disagreement on that underpinning. The remaining
area is red. The more red, the weaker the
underpinning is (all according to the assessment by
the group of experts represented in the diagram).
The methodological advantage of representing the
group results by a kite diagram is that you can
capture the information from all experts in the
group without the need to average expert opinion.
A second advantage is that is provides a fast and
intuitive overview of parameter strength,
preserving the underlying information.

 We also calculated an overall average number for
parameter strength, attributing equal weight to each
of the 5 pedigree criteria we used. Further, we
calculated the standard deviations in parameter
strength to reflect the level of (dis)agreement
amongst the experts.

 Results indicate a range of attributes for the key
TIMER parameters. For some parameters, there is
reasonable consistency across the group results,
indicating a convergence in view of the
underpinnings of these parameters. We found that
the convergence within groups tended to be larger,
and sometimes much larger, than across the
groups. This reflects the influence of discussion
among the group members in the evaluation of
strength. For other parameters there is considerable
disagreement within and across groups. For
instance, large intra-group disagreement was found
on the value ladeness of the initial gas resource
base. We found a similar pattern of disagreement
on this score in all three groups. This could reflect

a lack of expertise within some groups, with some
participants simply not able to make appropriate
judgements. However we have indications that this
is not necessarily the case. That is because
participants working in the core of the field of
energy systems analysis and experts who gave a
high score for their self assessment of competence
on those parameters also diverge from each other
on their pedigree scores for these parameters.

 

7. DIAGNOSTIC DIAGRAM

Results from the sensitivity analysis and strength
assessments were combined in figure 2 to produce
a diagnostic diagram. The diagram shows each of
the selected parameters plotted according to
sensitivity and strength. The sensitivity axis
measures criticality of quantitative parameter
uncertainty, using the contribution to change in
CO2 emissions from the Morris sensitivity runs.
Results have been normalised for display.

The strength axis displays the pedigree scores for
each variable averaged over the five pedigree
criteria and the experts who ranked the variable.
The error bars about these values indicate one
standard deviation about the average expert value,
to reflect the associated degree of expert
disagreement on pedigree scores. Results have
been plotted on a scale from 1 at the origin to zero
on the right. With this convention the more
“dangerous” variables are in the top right quadrant
of the plot where sensitivity is high and strength is
low.

Diagnostic Diagram

Strength
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Fuel specific efficiency thermal electric

IVA

Learning rate gas
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PIEE maximum reduction
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Initial resources base for oil
Gas depletion multipier

OPEC threshold

GDP
Learning rate oil

Initial costs nuclearInitial costs solar & wind

Learning rate bio fuels
Learning rate surface coal

PIEE pay back time
Lifetime enduse capital

Figure 2. Diagnostic diagram for key uncertainties
in TIMER model parameters.

We refer to the top right quadrant region of the
diagnostic diagram in particular as the “danger
zone”. However, note that it does not have sharp
boundaries and is not confined simply to the top
right quadrant. The lower the contribution to
sensitivity and the higher the strength, the further
out of the danger zone, but there is no strictly “safe
zone” as such. The term “danger zone” is simply
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shorthand notation for higher sensitivity, lower
strength combinations.

Since the majority of averages is between a
relatively small band (values between 0.3  and 0.6),
the resolving power on strength is relative weak in
this case. Reasons for this might include the
convergence process within groups, the process of
calculating averages for pedigree scores and
groups (divergence cancels out in this way), and
the extent to which theory in the field of energy
system analysis and modelling is crystallised
according to the participants.

We identified three parameters as being close to
the danger zone: Structural change, B1 population
scenario, and Autonomous Energy Efficiency
Improvement (AEEI). These variables have a large
bearing on the CO2 emission result but have only
weak to moderate strength as judged from the
pedigree exercise. This makes intuitive sense in
each case. Structural change in the economy has a
large bearing on energy demand and use and
heavily conditions CO2 emissions. Further,
structural change is represented in a highly
idealised way in energy models and has limited
grounding in theory or data and has not well been
validated. Thus, its strength is weak to moderate
(with the range here dependent on the particular
experts assessment). Similarly, the population
scenario has a large bearing on emissions via
population loading on energy demand. The
underpinnings of population scenarios in terms of
theory, data, and method are judged to be slightly
stronger (on average) than for the structural change
variable, though still of only moderate strength.
Autonomous energy efficiency improvements
affect emissions strongly because of the role they
play in translating demand for energy services into
actual consumption. The theory behind this
concept and its rate of change is fairly weak and
there is little data to validate it. However there is
some disagreement about the actual underpinnings
of the AEEI variables and its strength spans from
weak to moderate depending on the expert.

In interpreting the diagram, we must keep in mind
that in calculating strength figures, we weighted all
pedigree criteria equally, whereas it may depend
on the specific nature of the parameter at hand
what pedigree criteria are critical. Therefore, when
a variable is identified as important from the
diagnostic diagram, one can get further diagnostic
aid by considering its underlying pedigree
elements. If it has low strength, the pedigree scores
will reveal in particular why the average pedigree
(strength) is low. Reflection on the relative
importance of these weaknesses in parameter
underpinning in view of the nature and

characteristics of that parameter may be needed for
further meaningful interpretation and prioritisation
of uncertainties. Knowing which parts of the
pedigree are weakest guidance on where to
possibly improve it.

Attempts to increase the robustness of energy
related CO2 emissions projections from the model
would naturally focus first in improving the
underpinnings of the variables closest to the danger
zone discussed above. The next cluster of variables
apparent in the diagnostic diagram is the group
with moderate sensitivity contributions and weak
to moderate strength in the centre of the diagram.
This includes nuclear, learning solar wind, price
induced energy efficiency improvement, and the
fuel specific efficiency in thermal electric. As one
descends the sensitivity axis in the diagnostic
diagram to cover variables with increasingly lower
sensitivity contributions it is important to pay
particular attention to variables low in strength.
When variables are particularly low in strength, the
theory, data, and method underlying their
representation may be weak and we can then
expect that they are less perfectly represented in
the model. With such high uncertainty on their
representation, it cannot be excluded that a better
representation would give rise to a higher
sensitivity. An example of such a variable could be
the nuclear depletion multiplier, which has a
strength from almost none to weak and a moderate
sensitivity contribution. Should more knowledge
come to light on the factors underpinning this
variable, an alternative representation may move it
higher or lower in the diagram. A move higher
would likely bring it more squarely into the danger
zone.

8. CONCLUSION AND DISCUSSION

We applied the NUSAP method to assess
quantitative and qualitative dimensions of
uncertainty in the TIMER model. We assessed
parameter sensitivity using the Morris method and
parameter pedigree and parameter value loading by
means of a NUSAP expert elicitation workshop.
We focussed the elicitation on those parameters
identified either as sensitive by the Morris analysis
or as key uncertain parameter by expert elicitation.
The pedigree of these parameters was assessed by
systematically evaluating the underpinning of the
numerals and the status and nature of the
knowledge from which they stem. We looked
particularly at the following dimensions of
parameter pedigree: proxy, empirical basis,
theoretical understanding, methodological rigour
and validation.
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Results indicate a range of attributes for the key
TIMER parameters. For some parameters there is
reasonable consistency across the group results,
indicating a common view of the underpinnings of
these parameters and that the pedigree scores are
meaningful. For other parameters there is
considerable disagreement within and across
groups. We interpret these diverging scores to
reflect a higher degree of ignorance on the
underpinning of those key uncertain parameters.

Pedigree results show slightly higher average score
for theoretical understanding compared to
empirical basis combined with the consistently low
scores for validation nicely reflect the inherent
theory ladeness of scenario studies of future
developments, but in this case based on not so well
crystallised theory. The latter may reflect that the
scientific discipline of energy modelling and
energy systems analysis is, seen from an
epistemological perspective, in a relatively early
stage of its development. One implication is that it
seems more expectable that quantitative energy
related CO2 emission projections will remain in
flux over the coming years than that they will show
to have converged in the coming decade. It could
also imply that the discipline of energy modelling
is in a phase of development where more research
may initially increase uncertainties by revealing
new complexities not accounted for earlier.
Consequently, the level of uncertainty is not a
suitable indicator for the quality and progress in
this complex field.

A diagnostic diagram combines results for
parameter sensitivity and parameter strength. It
provides a convenient way in which to view each
of the key parameters in terms of their relative
contribution to sensitivity in output and relative
strength underlying their determination and
representation. It is clear from the diagram which
variables have relatively lower priority when one
aims to increase the insightfulness and reliability of
model projections, and which ones are more
substantial contributors to overall uncertainty
within the TIMER B1 scenario. Variables with
relatively weaker or stronger pedigrees can be
reasonably identified using the expert elicitation
methods applied here. As a result, the NUSAP
method provides a useful means to focus research
efforts on the potentially most problematic
parameters while it at the same time pinpoints
specific weaknesses in these parameters.

This has been the first test of the use of NUSAP on
a model of such complexity as TIMER. The results
give support to the thought that the method can
usefully be adapted and used for other complex
model applications as well. This interpretation is

supported by an evaluative survey held after the
workshop: the responding participants
unanimously answered the question whether they
would like to see this type of NUSAP workshop
further applied, with Yes. The overall judgement of
the usefulness of the NUSAP workshop by the
respondents to the survey was useful (62%) to very
useful (38%) on a five point scale from not useful
at all to very useful.
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